Abstract:
An image forming paper comprises at least pulp, wherein the paper has a spectral reflectance of at least 85% for light diffused-reflected therefrom in a wavelength range of from 440 nm to 640 nm, and a spectral reflectance distribution in which the difference between the maximum and minimum values of the spectral reflectance of the light in the above wavelength range is 5% or less. Therefore, since the amount of light reflected by the paper is large and the reflectance in blue to red regions is constant, color chroma of a color image on the paper is enhanced particularly in green to red regions, and a color reproduction area of the color image is enlarged.
Abstract:
An optical system is disclosed which is capable of improving of its contrast characteristic and displaying of images which have a brightness according to the brightness of the use environment. The optical system comprises an optical integrator which divides and recombines the illumination luminous flux in a first axis direction and a light intensity distribution converter which converts the light intensity distribution of the illumination luminous flux in a second axis direction. The optical system further comprises a luminous flux limiting unit which has an aperture. The size of the aperture is changeable in the second axis direction and unchangeable in the first axis direction.
Abstract:
At least one exemplary embodiment is directed to an image display device which includes: a first TN liquid crystal modulator for modulating the polarization state of first colored light; a second TN liquid crystal modulator for modulating the polarization state of second colored light; a third TN liquid crystal modulator for modulating the polarization state of third colored light; and an optical system for synthesizing the image light emitted from the three liquid crystal modulators; where a first voltage is applied to the first liquid crystal modulator for providing the first colored light with about half-wavelength phase difference; second voltage higher than the first voltage is applied to the second liquid crystal modulator for providing the second colored light with about half-wavelength phase difference; and third voltage higher than the second voltage is applied to the third liquid crystal modulator for providing the third colored light with about half-wavelength phase difference.
Abstract:
An illumination optical system which can use light from a light source with high efficiency and can provide an illumination luminous flux with highly uniform illuminance, is disclosed. The illumination optical system illuminates an illumination surface with a generally telecentric illumination luminous flux. In light intensity distribution of illumination light on the illumination surface changing depending on a deviation angle of an incident ray with respect to a normal to the illumination surface, the illumination optical system operates the illumination luminous flux such that a ratio of angle widths at which light intensity reaches half of a peak value in each of two axis directions orthogonal to each other on the illumination surface is an aspect ratio of 2:1.
Abstract:
An illumination optical system is disclosed, which provides a luminous flux with a small incident angle on an illumination surface in one axis direction on a section of the luminous flux. The illumination optical system can suppress a reduction in light amount by a mask provided for a polarization conversion element. The illumination optical system has a light source and an optical integrator. The optical integrator uses a lens array to perform splitting of a luminous flux from the light source. The illumination optical system has the polarization conversion element including a polarization beam splitter array, a plurality of ½ wave plates, and a mask. The light source is a discharge gas exciting arc tube of a DC drive type.
Abstract:
An illumination optical system which can use light from a light source with high efficiency and can provide an illumination luminous flux with highly uniform illuminance, is disclosed. The illumination optical system illuminates an illumination surface with a generally telecentric illumination luminous flux. In light intensity distribution of illumination light on the illumination surface changing depending on a deviation angle of an incident ray with respect to a normal to the illumination surface, the illumination optical system operates the illumination luminous flux such that a ratio of angle widths at which light intensity reaches half of a peak value in each of two axis directions orthogonal to each other on the illumination surface is an aspect ratio of 2:1.
Abstract:
A projection type image display apparatus includes an electroluminescence element which has a plurality of pixels that can each emit modulated light, a projection optical system which projects the light emitted from each of the pixels in the electroluminescence element onto an object to display an image, and a sensor which detects brightness of ambient light that illuminates the object. A controller controls brightness of the light emitted from the electroluminescence element based on the brightness of the ambient light.
Abstract:
A projection type image display apparatus includes a projection optical system the projects light emitted from an organic EL element onto a target object. The projection optical system has a characteristic non-telecentric toward the EL element with principal rays which pass through the median point of the aperture pupil that captures light diffusively emitted from the EL element converging when seen from the EL element at a pixel position where the object height on the EL element from the optical axis of the projection optical system reaches a maximum.
Abstract:
A projection type image display apparatus includes an electroluminescence element which has a plurality of pixels that can each emit modulated light, a projection optical system which projects the light emitted from each of the pixels in the electroluminescence element onto an object to display an image, and a sensor which detects brightness of ambient light that illuminates the object. A controller controls brightness of the light emitted from the electroluminescence element based on the brightness of the ambient light.
Abstract:
The invention provides a laser etching method for optical ablation working by irradiating a work article formed of an inorganic material with a laser light from a laser oscillator capable of emitting in succession light pulses of a large energy density in space and time with a pulse radiation time not exceeding 1 picosecond, wherein, in laser etching of the work article formed of the inorganic material by irradiation thereof with the laser light from the laser oscillator with a predetermined pattern and with a predetermined energy density, there is utilized means for preventing deposition of a work by-product around the etching position.