Abstract:
A method of modulation detection. A signal is received (710). A first decision statistic can be generated based on the received signal (720). The received signal can be transformed (725). A second decision statistic can be generated based on the transformed received signal (735). A selected modulation type can be determined based on comparing the first decision statistic with the second decision statistic (740).
Abstract:
A method for reducing interference in a desired signal in a GSM communication system uses a finite-impulse-response filter for alternate linear equalization. The method includes a first step (300) of inputting a burst of data of a received waveform including interference from a channel of the communication system. A next step (302) includes training the finite-impulse-response filter with a set of symbols of specific quadrature phase, known a priori, in the burst of data of the received waveform. For example known real only and imaginary only symbols are alternatively selected from a midamble of the data burst. A next step (304) includes operating on the received waveform with the finite-impulse-response filter to alternately linearly equalize the burst of data to provide an estimate of the desired signal.
Abstract:
A wireless communication system that communicates (500) frames having first and second sub-frames (510, 520) with time-frequency resource elements. The first sub-frame including first reference symbol information and the second sub-frame including second reference symbol information, and not more than one of the first and second sub-frames including user specific radio resource assignment information. Wireless communication entities receiving the frames process the time-frequency elements of the first sub-frame using the first reference symbol information and processing the time-frequency elements of the second sub-frame using the second reference symbol information.
Abstract:
A base station (103) assigns a set of mobile stations (101) to a group wherein the group will share a set of radio resources (770). A control field (1103) may be sent with a payload field (1105) wherein the control field (1103) and payload field (1105) are sent using a single Orthogonal Variable Spreading Factor or a single Walsh Code (1101) wherein various modulation and coding schemes may be applied to the control field (1103) and payload field (1105) such that different modulation and coding schemes may be used within the single channel. HARQ is handled by sending a single retransmission if a NACK message is received or no ACK/NACK message is received at all.
Abstract:
Disclose is a synchronized wireless communication network (100) operating in single frequency network mode comprising a first base station (502) broadcasting, on a first channel, broadcast data and a common sequence (508) that is generated from a first channel identifier, and wherein the first base station transmits data on a common control channel. A second base station (510), adjacent to the first base station and synchronized with the first base station, the second base station simultaneously broadcasting on the first channel the broadcast data and the common sequence, and wherein the second base station transmits data on a common control channel.
Abstract:
A method and apparatus for handling a difference between a first and second message prior to decoding is disclosed The signaling scenapo illustrated by FIG 1 and using the codeword properties defined herein, the vanous embodiments may combine multiple messages under the hypothesis that the value of a message portion corresponding to any subsequent observed transmission is different Accordingly, a first set of observations (LLR's) (601 ) may be compared with a second or subsequent set of observations (603), and if the observations are found sufficiently similar, may be further compared in the context of a hypothesized difference (607) in constituent message information words Once any difference in information words is identified, the second or subsequent set of observations may be combined (611) with the first set of observations after suitable arithmetic processing, and prior to further decoding.
Abstract:
A wireless communication network entity (400) and a method therein wherein data is encoded using an error correcting code to form a first codeword, for example, a cyclic redundancy code, including redundancy. A second codeword is generated by encoding additional data on a portion of the first codeword, wherein the portion of the first codeword on which the additional data is encoded being within an error correction capability of the first codeword.