Abstract:
To provide a light-transmitting window material made of a spinel sintered body, wherein the largest diameter of pores contained in the light-transmitting window material is not more than 100 μm, and the number of pores having a largest diameter of not less than 10 μm is not more than 2.0 per 1 cm3 of the light-transmitting window material, and wherein light scattering factors are further reduced, and a method for producing a spinel light-transmitting window material including the steps of preparing a spinel molded body; a primary sintering step of sintering the spinel molded body at normal pressure or less or in a vacuum at a temperature in the range of 1500 to 1900° C.; and a secondary sintering step of sintering the spinel molded body under pressure at a temperature in the range of 1500 to 2000° C., wherein the relative density of the spinel molded body after the primary sintering step is 95 to 96% and the relative density of the spinel molded body after the secondary sintering step is 99.8% or more.
Abstract:
The present method of manufacturing a GaN-based film includes the steps of preparing a composite substrate, the composite substrate including a support substrate in which a coefficient of thermal expansion in a main surface is more than 0.8 time and less than 1.2 times as high as a coefficient of thermal expansion of GaN crystal in a direction of a axis and a single crystal film arranged on a side of the main surface of the support substrate, the single crystal film having threefold symmetry with respect to an axis perpendicular to a main surface of the single crystal film, and forming a GaN-based film on the main surface of the single crystal film in the composite substrate. Thus, a method of manufacturing a GaN-based film capable of manufacturing a GaN-based film having a large main surface area and less warpage is provided.
Abstract:
A method for producing a GaN crystal capable of achieving at least one of the prevention of nucleation and the growth of a high-quality non-polar surface is provided. The production method of the present invention is a method for producing a GaN crystal in a melt containing at least an alkali metal and gallium, including an adjustment step of adjusting the carbon content of the melt, and a reaction step of causing the gallium and nitrogen to react with each other. According to the production method of the present invention, nucleation can be prevented, and as shown in FIG. 4, a non-polar surface can be grown.
Abstract:
To provide a light-transmitting window material made of a spinel sintered body, wherein the largest diameter of pores contained in the light-transmitting window material is not more than 100 μm, and the number of pores having a largest diameter of not less than 10 μm is not more than 2.0 per 1 cm3 of the light-transmitting window material, and wherein light scattering factors are further reduced, and a method for producing a spinel light-transmitting window material including the steps of preparing a spinel molded body; a primary sintering step of sintering the spinel molded body at normal pressure or less or in a vacuum at a temperature in the range of 1500 to 1900° C.; and a secondary sintering step of sintering the spinel molded body under pressure at a temperature in the range of 1500 to 2000° C., wherein the relative density of the spinel molded body after the primary sintering step is 95 to 96% and the relative density of the spinel molded body after the secondary sintering step is 99.8% or more.
Abstract:
The present invention is a minimal-defect light-emitting device substrate that enables emitted light to issue from a device's substrate side, and is a light-emitting device 100 substrate furnished with a transparent substrate 10 that is transparent to light of wavelengths between 400 nm and 600 nm, inclusive, and a nitride-based compound semiconductor thin film 1c formed onto one of the major surfaces of the transparent substrate 10 by a join. Letting the thermal expansion coefficient of the transparent substrate along a direction perpendicular to the major surface of the transparent substrate be α1, and the thermal expansion coefficient of the nitride-based compound semiconductor thin film be α2, then (α1−α2)/α2 is between −0.5 and 1.0, inclusive, and at up to 1200° C. the transparent substrate does not react with the nitride-based compound semiconductor thin film 1c. The absolute index of refraction of the transparent substrate 10 preferably is between 60% and 140%, inclusive, of the absolute index of refraction of the nitride-based compound semiconductor thin film.
Abstract:
A method of manufacturing a group III-nitride crystal substrate including the steps of introducing an alkali-metal-element-containing substance, a group III-element-containing substance and a nitrogen-element-containing substance into a reactor, forming a melt containing at least the alkali metal element, the group III-element and the nitrogen element in the reactor, and growing group III-nitride crystal from the melt, and characterized by handling the alkali-metal-element-containing substance in a drying container in which moisture concentration is controlled to at most 1.0 ppm at least in the step of introducing the alkali-metal-element-containing substance into the reactor is provided. A group III-nitride crystal substrate attaining a small absorption coefficient and the method of manufacturing the same, as well as a group III-nitride semiconductor device can thus be provided.
Abstract:
There is provided a method of producing a polycrystalline transparent ceramic substrate used in a transparent substrate or the like for a liquid crystal projector. The method of producing a polycrystalline transparent ceramic substrate is characterized in comprising a step for sintering a ceramic body molded into a predetermined shape and producing a polycrystalline transparent ceramic sintered body, a step for cutting the polycrystalline transparent ceramic sintered body and producing a plurality of polycrystalline transparent ceramic cut bodies, a step for polishing the cut surfaces of the polycrystalline transparent ceramic cut bodies and producing polycrystalline transparent ceramic polished bodies, and a step for applying an antireflection coating to the polycrystalline transparent ceramic polished bodies and producing coated polycrystalline transparent ceramic bodies.
Abstract:
The present invention provides a method for producing a Group III nitride compound semiconductor crystal, the semiconductor crystal being grown through the flux method employing a flux. At least a portion of a substrate on which the semiconductor crystal is to be grown is formed of a flux-soluble material. While the semiconductor crystal is grown on a surface of the substrate, the flux-soluble material is dissolved in the flux from a surface of the substrate that is opposite the surface on which the semiconductor crystal is grown. Alternatively, after the semiconductor crystal has been grown on a surface of the substrate, the flux-soluble material is dissolved in the flux from a surface of the substrate that is opposite the surface on which the semiconductor crystal has been grown. The flux-soluble material is formed of silicon. Alternatively, the flux-soluble material or the substrate is formed of a Group III nitride compound semiconductor having a dislocation density higher than that of the semiconductor crystal to be grown.
Abstract:
The present invention provides a method of manufacturing a gallium nitride single crystal that can suppress the decomposition of gallium nitride and improve production efficiency in a sublimation method. According to the manufacturing method, a material (GaN powder) for the gallium nitride (GaN) single crystal is placed inside a crucible, sublimed or evaporated by heating, and cooled on a substrate surface to return to a solid again, so that the gallium nitride single crystal is grown on the substrate surface. The growth of the single crystal is performed under pressure. The pressure is preferably not less than 5 atm (5×1.013×105 Pa). The single crystal is grown preferably in a mixed gas atmosphere containing NH3 and N2.
Abstract:
In a wavelength converting method, an ambient that is in contact with a surface of a non-linear optical crystal from which wavelength-converted light is outputted is a gas that is lower in content of nitrogen than air. A wavelength converting device includes a device for controlling the ambient in contact with a surface of the non-linear optical crystal from which the wavelength-converted light is outputted so the ambient is lower in nitrogen than air. A laser machining device includes the wavelength converting device.