Abstract:
An elevator power distribution system includes an elevator car (114; 214; 314; 414; 514) configured to travel in a lane (113, 115, 117; 213; 313, 315, 317; 413, 415, 417; 513, 515, 517) of an elevator shaft (111) and a linear propulsion system configured to impart force to the elevator car. The linear propulsion system includes a first portion (216), mounted in the lane and a second portion (218) mounted to the elevator car configured to coact with the first portion (216) to impart movement to the elevator car. A plurality of electrical buses (371, 372, 373, 374; 471, 472, 473, 474; 571, 572, 573, 574) are disposed within the lane and configured to provide power to the first portion, a rectifier (361a, 362a, 363a, 364a, 361b, 362b, 363b, 364b, 361c, 362c, 363c, 364c; 461a, 462a, 463a, 464a, 461b, 462b, 463b, 464b, 461c, 462c, 463c, 464c; 561a, 562a, 563a, 564a, 561b, 562b, 563b, 564b, 561c, 562c, 563c, 564c) is electrically connected to each of the plurality of buses and configured to convert power provided between the respective bus and a grid (302; 402; 502), and a battery backup (381a, 382a, 383a, 384a, 381b, 382b, 383b, 384b, 381c, 382c, 383c, 384c; 481a, 482a, 483a, 484a, 481b, 482b, 483b, 484b, 481c, 482c, 483c, 484c; 585a, 585b, 585c) is electrically connected with the rectifier and configured to transfer power to or receive power from the rectifier.
Abstract:
A method and system of reducing/eliminating ripple in an electric motor. An electric parameter, such as current is sensed in an input electric signal. Ripple is detected in the signal using one or more current sensors and a discrete Fourier transform calculation. Ripple is reduced by adjusting the electric signal being sent from a drive control to an electric motor, using a closed-loop configuration. The electric motor might be a regenerative electric motor that is configured to sink or supply electricity to a power grid.
Abstract:
A drive and motor system and method for a six phase machine with negligible common-mode voltage is provided. The six-phase machine includes six phase windings divided into at least two windings groups configured to generate a zero common-mode pulse width modulation. The drive and motor system and method can also include at least one direct current source and a six phase inverter switching between positive and negative power of the at least one direct current source.
Abstract:
An elevator system (100) includes an elevator car (102). A first drive assembly (160) engages a first tension member (112). The first tension member (112) is coupled to the elevator car (102) and to a first counter-weight (104). A second drive assembly (170) engages a second tension member (122). The second tension member (122) is coupled to the elevator car (102) and to a second counterweight (106). The first tension member (112) can be coupled to the elevator car (102) at a first position (110) and the second tension member (122) can be coupled to the elevator car (102) at a second position (120) opposite the first position (110).
Abstract:
A three-level converter includes a first converter leg having first switches connected across a positive DC node and a negative DC node, a second converter leg having second switches connected across the positive DC node and the negative DC node, and a third converter leg having third switches connected across the positive DC node the negative DC node. The converter includes a battery connected between the positive DC node and the negative DC node, and center-connected to a ground node having a ground potential. Each of the first, second, and third converter legs is connected to the ground node.
Abstract:
An elevator car location sensing system includes at least one first barometric pressure sensor disposed at a sensor position. The first barometric pressure sensor is configured to measure at least one first barometric pressure at the sensor position. An elevator control module is configured to electrically communicate with at least one mobile terminal device that is movable among a plurality of different altitudes. The elevator control module receives a second barometric pressure from the mobile terminal device located at a current altitude, and determines the current altitude based on a comparison between the first barometric pressure and the second barometric pressure.
Abstract:
The present disclosure relates generally to a selectively operable safety brake including a magnetic brake operably coupled to a rod and disposed adjacent to a metal component, the magnetic brake configured to move between an engaging position and a non-engaging position, said magnetic brake, when in the engaging position contemporaneously with motion of the machine, moving the rod in to thereby move the safety brake from the non-braking state into the braking state, and an electromagnetic component including a retention apparatus, the electromagnetic component configured to move the magnetic brake from the engaging position to the non-engaging position upon receipt of a resetting signal.
Abstract:
A drive unit for a motor includes a printed circuit board (PCB); a first gallium nitride switch having a gate, the first gallium nitride switch mounted to the PCB; a second gallium nitride switch having a gate, the second gallium nitride switch mounted to the PCB; a gate driver generating a turn-off drive signal to turn off the first gallium nitride switch and turn off the second gallium nitride switch; a first turn-off trace on the PCB, the first turn-off trace directing the turn-off drive signal to the gate of the first gallium nitride switch; and a second turn-off trace on the PCB, the second turn-off trace directing the turn-off drive signal to the gate of the second gallium nitride switch; wherein an impedance of the first turn-off trace is substantially equal to an impedance of the second turn-off trace.
Abstract:
A method of wear detection of a coated belt or rope includes measuring an initial electrical resistance of one or more cords, strands or wires of the coated belt or rope. The initial electrical resistance is calibrated by repeating the measuring of initial electrical resistance and populating a database with the measured initial electrical resistance values. A true initial resistance is determined from the population of initial electrical resistances and subsequent measured values of electrical resistance of the one or more cords, strands or wires of the coated belt or rope.
Abstract:
Electromagnetic actuators for an elevator systems and encapsulated components thereof are described. The encapsulated components include an encapsulating body and a component assembly is arranged within the encapsulating body, wherein at least some parts of the component assembly are contained within a material of the encapsulating body.