NONLINEAR IDENTIFICATION USING COMPRESSED SENSING AND MINIMAL SYSTEM SAMPLING
    41.
    发明申请
    NONLINEAR IDENTIFICATION USING COMPRESSED SENSING AND MINIMAL SYSTEM SAMPLING 审中-公开
    使用压缩感知和最小系统采样的非线性识别

    公开(公告)号:WO2011139858A2

    公开(公告)日:2011-11-10

    申请号:PCT/US2011034395

    申请日:2011-04-28

    CPC classification number: H03M7/30 G06K9/00496 H03F1/3258

    Abstract: Compressed sensing is used to determine a model of a nonlinear system. In one example, L1-norm minimization is used to fit a generic model function to a set of samples thereby obtaining a fitted model. Convex optimization can be used to determine model coefficients that minimize the L1-norm. In one application, the fitted model is used to calibrate a predistorter. In another application, the fitted model function is used to predict future actions of the system. The generic model is made of up of constituent functions that may or may not be orthogonal to one another. In one example, an initial model function of non-orthogonal constituent functions is orthogonalized to generate a generic model function of constituent orthogonal functions. Although the number of samples to which the generic model is fitted can be less than the number of model coefficients, the fitted model nevertheless accurately models system nonlinearities.

    Abstract translation: 压缩感测用于确定非线性系统的模型。 在一个示例中,L1范数最小化用于将通用模型函数拟合到一组样本,从而获得拟合模型。 凸度优化可用于确定最小化L1范数的模型系数。 在一个应用中,拟合模型用于校准预失真器。 在另一个应用中,拟合模型函数用于预测系统的未来动作。 通用模型由可能彼此或可能不相互正交的组成函数构成。 在一个示例中,非正交组成函数的初始模型函数被正交化以生成组成正交函数的通用模型函数。 虽然通用模型拟合的样本数量可以小于模型系数的数量,但拟合模型仍然能够准确地模拟系统非线性。

Patent Agency Ranking