Abstract:
A device for encoding video data includes a memory configured to store video data, and a video encoder implemented in circuitry and configured to encode a future picture of the video data having a first display order position, the future picture being included in an intra period (IP) of the video data, the IP comprising a plurality of groups of pictures (GOPs), and after encoding the future picture, encode a picture of an ordinal first GOP of the plurality of GOPs using the future picture as a reference picture, each picture of the ordinal first GOP having display order positions earlier than the first display order position. Encoding the future picture in this manner may result in encoding performance improvements with minimal increases in encoding and decoding complexity.
Abstract:
In an example, a method of processing video may include receiving a bitstream including encoded video data and a colour remapping information (CRI) supplemental enhancement information (SEI) message. The CRI SEI message may include information corresponding to one or more colour remapping processes. The method may include decoding the encoded video data to generate decoded video data. The method may include applying a process that does not correspond to the CRI SEI message to the decoded video data before applying at least one of the one or more colour remapping processes to the decoded video data to produce processed decoded video data.
Abstract:
A video coder may determine a motion vector of a non-adjacent block of a current picture of the video data. The non-adjacent block is non-adjacent to a current block of the current picture. Furthermore, the video coder determines, based on the motion vector of the non-adjacent block, a motion vector predictor (MVP) for the current block. The video coder may determine a motion vector of the current block. The video coder may also determine a predictive block based on the motion vector of the current block.
Abstract:
This disclosure relates to processing video data, including processing video data to conform to a high dynamic range/wide color gamut (HDR/WCG) color container. As will be explained in more detail below, the techniques of the disclosure including dynamic range adjustment (DRA) parameters and apply the DRA parameters to video data in order to make better use of an HDR/WCG color container. The techniques of this disclosure may also include signaling syntax elements that allow a video decoder or video post processing device to reverse the DRA techniques of this disclosure to reconstruct the original or native color container of the video data.
Abstract:
RESUMEN Esta descripción se refiere al procesamiento de datos de video, incluyendo el procesamiento de datos de video para ajustarse a un recipiente de color de alto rango dinámico/amplia gama de colores (HDR/WCG). Como se explicará en más detalle a continuación, las técnicas de la descripción incluyen los parámetros ajuste de rango dinámico (DRA) y aplican los parámetros de DRA a datos de video con el fin de hacer un mejor uso de un recipiente de color HDR/WCG. Las técnicas de la presente descripción también pueden incluir elementos de sintaxis de señalización que permiten a un decodificador de video o un dispositivo de posprocesamiento de video revertir las técnicas DRA de esta descripción para reconstruir el recipiente de color original o nativo de los datos de video.
Abstract:
A device may determine, based on data in a bitstream, a luma sample (Y) of a pixel, a Cb sample of the pixel, and the Cr sample of the pixel. Furthermore, the device may obtain, from the bitstream, a first scaling factor and a second scaling factor. Additionally, the device may determine, based on the first scaling factor, the Cb sample for the pixel, and Y, a converted B sample (B) for the pixel. The device may determine, based on the second scaling factor, the Cr sample for the pixel, and Y, a converted R sample (R) for the pixel. The device may apply an electro-optical transfer function (EOTF) to convert Y, R, and B to a luminance sample for the pixel, a R sample for the pixel, and a B sample for the pixel, respectively.
Abstract:
In an example, a method of processing video may include receiving a bitstream including encoded video data and a colour remapping information (CRI) supplemental enhancement information (SEI) message. The CRI SEI message may include information corresponding to one or more colour remapping processes. The method may include decoding the encoded video data to generate decoded video data. The method may include applying a process that does not correspond to the CRI SEI message to the decoded video data before applying at least one of the one or more colour remapping processes to the decoded video data to produce processed decoded video data.
Abstract:
This disclosure relates to processing video data, including processing video data to conform to a high dynamic range/wide color gamut (HDR/WCG) color container. As will be explained in more detail below, the techniques of the disclosure including dynamic range adjustment (DRA) parameters and apply the DRA parameters to video data in order to make better use of an HDR/WCG color container. The techniques of this disclosure may also include signaling syntax elements that allow a video decoder or video post processing device to reverse the DRA techniques of this disclosure to reconstruct the original or native color container of the video data.