Abstract:
Techniques for performing power control during discontinuous transmission (DTX) operation are described. A UE transmits on the uplink during a transmission burst and receives TPC commands generated by a Node B based on the uplink transmission. The UE may receive two TPC commands at the end of the transmission burst that are not applied during the transmission burst. The UE saves and applies these two TPC commands in the next transmission burst. In one design, the UE applies each saved TPC command in one slot of the next transmission burst. In another design, the UE combines the two saved TPC commands and applies the combined value in the first two slots of the next transmission burst. In yet another design, the UE selects one of the saved TPC commands and applies the selected TPC command in the first two slots of the next transmission burst.
Abstract:
Systems and methodologies are described that facilitate pilot channel optimization schemes for high data rate communications transmissions. In various illustrative implementations, pilot channel operations can be monitored and controlled by an exemplary base station for one or more cooperating wireless terminals (e.g., user equipment) such that one or more power features of the one or more cooperating wireless terminals can be illustratively changed in response to one or more selected pilot channel operational conditions. In an illustrative operation, an exemplary base station can engage one or more selected pilot channel control operations as part of pilot channel optimization comprising a jump detection technique, operating power control on another channel other than the DPCCH, engaging in delayed power control, engaging in a soft-hand off power control in the instance of a boosted pilot channel, and resolving ambiguity in grant messages resulting from a pilot boost.