Abstract:
In general, techniques are described for indicating frame parameter reusability for decoding vectors. A device comprising a processor and a memory may perform the techniques. The processor may be configured to obtain a bitstream comprising a vector representative of an orthogonal spatial axis in a spherical harmonics domain. The bitstream may further comprise an indicator for whether to reuse, from a previous frame, at least one syntax element indicative of information used when compressing the vector. The memory may be configured to store the bitstream.
Abstract:
In general, techniques are described for indicating frame parameter reusability for decoding vectors. A device comprising a processor and a memory may perform the techniques. The processor may be configured to obtain a bitstream comprising a vector representative of an orthogonal spatial axis in a spherical harmonics domain. The bitstream may further comprise an indicator for whether to reuse, from a previous frame, at least one syntax element indicative of information used when compressing the vector. The memory may be configured to store the bitstream.
Abstract:
In general, techniques are described for performing codebook selection when coding vectors decomposed from higher-order ambisonic coefficients. A device comprising a memory and a processor may perform the techniques. The memory may be configured to store a plurality of codebooks to use when performing vector dequantization with respect to a vector quantized spatial component of a soundfield. The vector quantized spatial component may be obtained through application of a decomposition to a plurality of higher order ambisonic coefficients. The processor may be configured to select one of the plurality of codebooks.
Abstract:
In general, techniques are described for coding of vectors decomposed from higher-order ambisonic coefficients. A device comprising a memory and a processor may perform the techniques. The memory may be configured to store audio data. The processor may be configured to determine whether to perform vector dequantization or scalar dequantization with respect to a decomposed version of the plurality of HOA coefficients.
Abstract:
In general, techniques are described for coding of vectors decomposed from higher order ambisonic coefficients. A device comprising a processor and a memory may perform the techniques. The processor may be configured to obtain from a bitstream data indicative of a plurality of weight values that represent a vector that is included in a decomposed version of the plurality of HOA coefficients. Each of the weight values may correspond to a respective one of a plurality of weights in a weighted sum of code vectors that represents the vector and that includes a set of code vectors. The processor may further be configured to reconstruct the vector based on the weight values and the code vectors. The memory may be configured to store the reconstructed vector.
Abstract:
In general, techniques are described for indicating reusability of an index that determines a Huffman codebook used to code data associated with a vector in a spherical harmonics domain. The bitstream may comprise an indicator for whether to reuse, from a previous frame, at least one syntax element indicative of the index. The memory may be configured to store the bitstream.
Abstract:
In general, techniques are described for signaling channels for scalable coding of higher order ambisonic audio data. A device comprising a memory and a processor may be configured to perform the techniques. The memory may be configured to store the bitstream. The processor may be configured to obtain, from the bitstream, an indication of a number of channels specified in one or more layers in the bitstream, and obtain the channels specified in the one or more layers in the bitstream based on the indication of the number of channels.
Abstract:
In general, techniques are described for specifying audio rendering information in a bitstream. A device configured to generate the bitstream may perform various aspects of the techniques. The bitstream generation device may comprise one or more processors configured to specify audio rendering information that includes a signal value identifying an audio renderer used when generating the multi-channel audio content. A device configured to render multi-channel audio content from a bitstream may also perform various aspects of the techniques. The rendering device may comprise one or more processors configured to determine audio rendering information that includes a signal value identifying an audio renderer used when generating the multi-channel audio content, and render a plurality of speaker feeds based on the audio rendering information.
Abstract:
In general, techniques are directed to intermediate compression of higher order ambisonic audio data. For example, a device comprising a processor and a memory may be configured to perform the techniques. The memory may be configured to store an intermediately formatted audio data generated as a result of an intermediate compression of higher order ambisonic audio data. The one or more processors may be configured to process the intermediately formatted audio data.
Abstract:
In general, techniques are described for obtaining decomposed versions of spherical harmonic coefficients. In accordance with these techniques, a device comprising one or more processors may be configured to determine a first non-zero set of coefficients of a vector that represent a distinct component of a sound field, the vector having been decomposed from a plurality of spherical harmonic coefficients that describe the sound field.