Abstract:
Techniques for deriving interpolated pilot symbols for a gated pilot in a wireless (e.g., IS-856, cdma2000, or W-CDMA) communication system. In one method, first and second recovered pilot symbols for first and second time instances, respectively, are initially obtained (e.g., derived based on pilot bursts for the gated pilot). A phase change induced in the received signal at a third time instance between the first and second time instances is estimated. First and second phase-rotated symbols are next derived based on the first and second recovered pilot symbols and the estimated induced phase change. Interpolated pilot symbols between the first and third time instances are then derived (e.g., using linear interpolation) based on the first recovered pilot symbol and the first phase-rotated symbol. Similarly, interpolated pilot symbols between the third and second time instances are derived based on the second phase-rotated symbol and the second recovered pilot symbol.
Abstract:
Systems and techniques for controlling transmission power involve receiving a first to second channel power ratio (502), receiving a first to second channel power ratio (502), adjusting the power ratio if a combined power of a plurality of channels exceeds a threshold (504), the channel as a function of the power ratio (506). It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
Abstract:
The invention is directed toward a digital VGA that is implemented in the logarithmic domain. The digital VGA exploits logarithmic properties to replace a complex multiplier of a conventional digital VGA with a simple and inexpensive adder. Moreover, additional techniques are described to significantly reduce the size of one or more lookup tables (LUTs) implemented within the digital VGA. In this manner, the invention can realize a simple, low cost digital VGA.
Abstract:
In one embodiment, the invention is directed toward techniques for generating results in a logarithmic domain. The techniques may exploit properties of a logarithmic function to reduce the memoryrequirements needed to implement lookup tables. For example, the techniques may utilize non-uniform sampling over a logarithmic orlogarithmic-like function to reduce the number of entries needed for a given lookup table. In particular, the techniques may involve separating a number into an exponent component and a mantissa component. Each of these different components can then be converted from a first domain to a second domain using different lookup tables.
Abstract:
Techniques to search for a gated pilot reference in a wireless communication system. In one method, an overall code space in which the pilot may be found is partitioned into a number of groups of code sets, with each code set representative of all possible chip offsets of a specific PN sequence. The groups are ordered based on the likelihood of detecting the pilot in each of the groups. The groups of code sets are then used to search for the pilot, one group at a time, starting with the group most likely to result in successful pilot acquisition and ending with the group least likely to result in successful pilot acquisition. The search is terminated upon successful acquisition. The pilot search may be performed using detect, dwell, and pull-in substages. The detect substage for one group may be performed in parallel with the pull-in substage for another group.
Abstract:
Aspects of frequency error detection with Physical Broadcast CHannel (PBCH) frequency hypothesis are described. For example, a method and apparatus are disclosed for frequency tracking in a user equipment (UE) may include detecting a change in frequency that exceeds a pull-in range of a frequency tracking loop (FTL) of the UE. The method and apparatus may also include identifying a tracking recovery frequency in response to the change in frequency being detected, wherein the tracking recover frequency is identified from a set of frequency hypotheses and based on decoding of the PBCH received by the UE. The method and apparatus may further include updating the FTL with the tracking recovery frequency.
Abstract:
Techniques are provided for suppressing interference by taking into account the possible bursty nature of co-channel interference in a communication system. In an aspect, interference levels are separately computed for first and second data portions of a desired signal. The computed interference levels may be used to scale the corresponding data portions for subsequent processing.
Abstract:
A system, method and device for frequency acquisition. In particular, the embodiments allow for a mobile telephone to simultaneously receive data and/or voice signals while acquiring a GPS signal for its navigation feature. The system, method and device of the present embodiments employ a digital rotator and a local oscillator in concert to acquire the respective signals, correct any frequency errors associated with those signals, and maintain a local timing reference suitable for receiving and transmitting data through a mobile network while simultaneously providing an accurate location through a GPS system.
Abstract:
Systems and techniques for gain control include amplifying a signal with an amplifier having a gain represented by one of a plurality of gain curves depending on a value of a parameter, the signal being amplified at a first one of the parameter values, and controlling the gain of the amplified signal from a predetermined gain curve relating to the gain curve of the amplifier for a second one of the parameter values by adjusting a gain control signal corresponding to a point on the predetermined gain curve as a function of the first one of the parameter values, and applying the adjusted gain control signal to the amplifier. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.
Abstract:
A graphics engine includes a setup unit and a rendering unit. The setup unit computes coefficients A, B, and C used for interpolating an attribute v of a triangle to be rendered for a graphics image. The setup unit then derives compressed coefficients Ã, B, and C based on the coefficients A, B, and C. The compressed coefficients have a fixed-point format with R integer bits left of a binary point and T fractional bits right of the binary point, where R>1 and T>=0. R is selected based on the number of bits used for attribute v, T is selected based on the screen dimension, and R+T is much less than the number of bits used to represent the coefficients A, B, and C. The rendering unit performs interpolation for the attribute v using the compressed coefficients Ã, B, and C, and may be implemented with a simple (R+T)-bit non-saturating accumulator.