Abstract:
In a particular embodiment, a method is disclosed that includes receiving an operand to be normalized at a normalization logic circuit, where the operand includes a plurality of bits. The method further includes generating a zero output when a value of the operand is equal to zero and, when the value is not equal to zero, generating an output value representing a number that is one less than a count of leading bits of the operand.
Abstract:
A multi-threaded processor is disclosed that includes a sequencer adapted to provide instructions associated with one or more threads of a multi-threaded processor. The sequencer includes an interrupt controller adapted to receive one or more interrupts and to selectively allow a first thread of the one or more threads to service at least one interrupt. The interrupt controller includes logic to preclude a second thread of the one or more threads from responding to the at least one interrupt.
Abstract:
In a particular embodiment, a method is disclosed that includes executing a single instruction to identify a location within a table stored at a memory. The single instruction is executable by a processor to extract bit field data from a first register and insert the bit field data into an index portion of a second register. The second register includes a table address portion and an index portion. The table address portion includes a table address identifying a memory location associated with a table. The table address and the bit field data combine to form an indexed address to an element within the table.
Abstract:
The disclosure includes a method and system of configuring a translation lookaside buffer (TLB). In an embodiment, the TLB includes a first portion and a second portion. The first portion or the second portion may be selectively disabled in response to a value of a TLB configuration indicator.
Abstract:
Techniques for the design and use of a digital signal processor, including (but not limited to) for processing transmissions in a communications (e.g., CDMA) system. Stuffing instructions in a processing pipeline of a multi-threaded digital signal processor provides for operating a core processor process and a debugging process within a debugging mechanism. Writing a stuff instruction into a debugging process registry and a stuff command in a debugging process command register provides for identifying a predetermined thread of the multi-threaded digital signal processor in which to execute the stuff instruction. The instruction stuffing process issues a debugging process control resume command during a predetermined stage of executing on the predetermined thread and directs the core processor to perform the stuff instruction during the debugging process. The core processor may then execute the stuffed instruction in association with the core processor process and the debugging process.
Abstract:
Techniques for the design and use of a digital signal processor, including (but not limited to) for processing transmissions in a communications (e.g., CDMA) system. The disclosed method and system provide for processing instructions in a multi-threaded process including the use of breakpoint instructions for generating debugging event(s). Generating a debugging event occurs in response to the execution of breakpoint instructions and executes debugging instructions in response to the debugging event. The debugging instructions debug processing instructions in the multi-threaded processor by transitioning at least one or more threads into a debugging mode. The disclosure generates a debugging return for reporting the executing debugging instructions in the subset of the threads of the multi-threaded processor.
Abstract:
A processor device is disclosed that includes a register file with a combined condition code register for scalar and vector operations. The processor device utilizes the combined condition code register for scalar and vector operations. Further, a compare operation can store resulting bits in the combined condition code register and a conditional operation can utilize the combined condition code register bits for evaluating a condition.
Abstract:
A method and system to combine multiple register units within a microprocessor, such as, for example, a digital signal processor, are described. A first register unit and a second register unit are retrieved from a register file structure within a processing unit, the first register unit and the second register unit being non-adjacently located within the register file structure. The first register unit and the second register unit are further combined during execution of a single instruction to form a resulting register unit. Finally, the resulting register unit is stored within the register file structure for further processing. Alternatively, a first half word unit from the first register unit and a second half word unit from the second register unit are retrieved. The first half word unit and the second half word unit are further input into corresponding high and low portions of a resulting register unit to form the resulting register unit during execution of a single instruction. Finally, the resulting register unit is stored within the register file structure for further processing.
Abstract:
Techniques for processing digital signals for a variety of applications, including in a communications (e.g., CDMA) system. A pointer location within a circular buffer is determined by establishing a length of the circular buffer, a start address that is aligned to a power of 2, and an end address located distant from the start address by the length and less than a power of 2 greater than the length. The method and system determine a current pointer location for an address within the circular buffer, a stride value of bits between the start address and the end address, a new pointer location within the circular buffer that is shifted from the current pointer location by the number of bits of the stride value. An adjusted pointer location is within the circular buffer by an arithmetic operation of the new pointer location with the length.
Abstract:
A multithreaded processor device is disclosed and includes a first program thread and second program thread. The second program thread is execution linked to the first program thread in a lock step manner. As such, when the first program thread experiences a stall event, the second program thread is instructed to perform a no operation instruction in order to keep the second program thread execution linked to the first program thread. Also, the second program thread performs a no operation instruction during each clock cycle that the first program thread is stalled due to the stall event. When the first program thread performs a first successful operation after the stall event, the second program thread restarts normal execution.