Abstract:
A method of communicating speech comprising time-warping a residual low band speech signal to an expanded or compressed version of the residual low band speech signal, time-warping a high band speech signal to an expanded or compressed version of the high band speech signal, and merging the time-warped low band and high band speech signals to give an entire time-warped speech signal. In the low band, the residual low band speech signal is synthesized after time-warping of the residual low band signal while in the high band, an unwarped high band signal is synthesized before time-warping of the high band speech signal. The method may further comprise classifying speech segments and encoding the speech segments. The encoding of the speech segments may be one of code-excited linear prediction, noise-excited linear prediction or 1/8 frame (silence) coding.
Abstract:
In one embodiment, the present invention comprises a vocoder having at least one input and at least one output, an encoder comprising a filter having at least one input operably connected to the input of the vocoder and at least one output, a decoder comprising a synthesizer having at least one input operably connected to the at least one output of the encoder, and at least one output operably connected to the at least one output of the vocoder, wherein the encoder comprises a memory and the encoder is adapted to execute instructions stored in the memory comprising classifying speech segments and encoding speech segments, and the decoder comprises a memory and the decoder is adapted to execute instructions stored in the memory comprising time-warping a residual speech signal to an expanded or compressed version of the residual speech signal.
Abstract:
The disclosure relates in some aspects to forbidden area procedures and connection release management for a user terminal (UT). Forbidden area-related procedures include, for example, using a special paging area code (PAC) in conjunction with a forbidden area, defining a location reporting threshold for a UT based on the proximity of the UT to a forbidden area, or using a default paging area code if a service restriction for a UT has ended. Connection release management includes, for example, a UT sending a request to cause the release of a Radio Connection that the UT no longer needs, or a UT sending a Location Indication (e.g., including a flag requesting release of a connection) to release the connection used for location reporting when a UT is done sending the location information and is going to go back to idle mode.
Abstract:
The disclosure relates in some aspects to managing paging area information for a user terminal (UT) and connection signaling. In some aspects, paging area information is provided for an idle UT by defining a default paging area code (PAC) that is known by the network and the UT. In some aspects, paging area information is communicated via connection signaling. In some aspects, connection signaling may be used to force a UT to invoke an update procedure (e.g., a reconnection).
Abstract:
The disclosure relates in some aspects to enabling a user terminal (UT) to obtain information about nearby cells and any beams generated by nearby cells. For example, a network can send a neighbor cell list to UTs, where the list identifies the cells in that neighborhood and provides information about any beams generated by those cells. Thus, a UT can learn the neighboring beams/cells that the UT can reselect to if the current beam/cell becomes weak. In some aspects, the UE can learn the attitude (e.g., pitch, roll, yaw, or any combination thereof) profile of neighboring satellites as well as the pointing angles and the ON-OFF schedules of their beams. In some aspects, the UT can learn a start angle and a span for a satellite and use this information to identify a satellite the UT can reselect to if the current beam/cell becomes weak.
Abstract:
Methods, systems, and devices are described for wireless communication at a UE. In aspects, a receiver may receive a transmission requesting information about support for data compression. The receiver may determine parameters related to the types of supported data compression and communicate the information to the transmitting device. In some cases, the receiver may then receive a message from the transmitting entity that requests establishment of a data compression configuration. The receiver may respond with confirmation or rejection of the proposed compression configuration. If the configuration is confirmed, the transmitter and receiver may exchange compressed data packets according to the configuration. The devices may exchange status and control information related to the compression configuration ( e.g ., in a compression header of a compressed message or a separate status and/or control information message).
Abstract:
Methods and apparatus of compression on multiple data flows for communication between a user equipment (UE) and a serving node. The methods and apparatus include receiving multiple data flows for compression, wherein each of the multiple data flows includes a plurality of data packets, with each data packet having a data packet header and a payload. Further, the methods and apparatus include determining a compression state for each of the multiple data flows. Moreover, the methods and apparatus include performing a first compression algorithm on each of the multiple data flows determined to have a compression state set to a do-not-compress state, wherein the first compression algorithm includes compressing the data packet header of each data packet without compressing the payload of each data packet.
Abstract:
Aspects of the present disclosure provide an apparatus and method for modem-assisted video telephony. As one example, a user equipment (UE) utilizes a modem to perform video telephony (VT) communication with a remote device through a wireless network. The UE determines a network metric indicative of congestion in the wireless network based on modem information obtained from the modem, independent of feedback information received from the remote device. The UE dynamically adjusts a data rate of the VT communication by an amount proportional to a quantity based on the network metric.
Abstract:
Methods and apparatus for wireless communication include receiving, at a compressor component, a data packet flow and determining information associated with the data packet flow from one or more data packets associated with the data packet flow. The determined information includes source or destination information corresponding to the one or more data packets of the data packet flow. Further, the methods and apparatus include classifying the data packet flow as a compressible or an uncompressed data packet flow based on the determined information, and compressing or skipping compressing of the one or more data packets associated with the data packet flow based on the classification of the data packet flow. Additionally, the methods and apparatus include transmitting the one or more compressed or uncompressed data packets depending on the classification of the data packet flow.
Abstract:
Apparatus and method for power management in a wireless communication network include determining a last packet of data transmitted to a network, sending a state transition indication embedded in the last packet to the network, and adjusting a state of a user equipment (UE) in response to sending the state transition indication embedded in the last packet to the network.