Abstract:
A novel message exchange protocol is disclosed. In one example, a method of transmitting data includes generating, with a wireless device, an application data message for an application; evaluating one or more criteria for determining whether to send the application data message via a data radio bearer (DRB) channel or via a signaling radio bearer (SRB) channel that communicatively couples the wireless device to a network resource; and based on determining to send the application data message via the SRB channel, sending the application data message to the network resource via the SRB channel.
Abstract:
In general, techniques are described for transforming video data in accordance with human visual system feedback metrics. For example, an apparatus comprising a transformation module, a parameter discovery module and a human visual system (HVS) feedback module implements these techniques. The parameter discovery module configures the transformation module to generate three-dimensional (3D) video data in accordance with parameters defining capabilities supported by a 3D display device. The transformation module transforms video data to generate the 3D video data. The HVS feedback module determines, while the transformation module transforms the video data, one or more metrics using an HVS model that reflects a quality of 3D visualization of the generated 3D video data with respect to a human visual system and reconfigures the one or more modules based on the determined one or more metrics to refine the generation of the 3D video data.
Abstract:
In general, techniques are described for preparing video data in accordance with a wireless display protocol. For example, a portable device comprising a module to store video data, a wireless display host module and a wireless interface may implement the techniques of this disclosure. The wireless display host module determines one or more display parameters of a three-dimensional (3D) display device external from the portable device and prepares the video data to generate 3D video data based on the determined display parameters. The wireless interface then wirelessly transmits the 3D video data to the external 3D display device. In this way, a portable device implements the techniques to prepare video data in accordance with a wireless display protocol.
Abstract:
Systems and methods identify a multi-hop network data path with sufficient available resources at each node along the data path to facilitate desired end-to-end data flow. Embodiments operate to identify resource constraints for meeting QoS or other communication requirements at each node of a multi-hop data path and propagate the resource constraint information within the network for use in identifying data paths suitable for supporting a desired end-to-end data flow. A resource allocation algorithm operable to allocate resources to achieve an end-to-end data flow meeting the communication requirements is implemented according to embodiments. A resource allocation algorithm of embodiments operates to ensure efficient use of the available resources so that desired conditions are satisfied when the resource requirements are met at each intermediate node for the upstream and downstream links and also both links simultaneously.
Abstract:
A method of coordinating a small cell with a plurality of small cells includes estimating backhaul bandwidth and backhaul bandwidth utilization of the small cell; estimating aggregate bandwidth utilization for the small cell and the plurality of small cells based on the estimated backhaul bandwidth utilization for each of the small cells; selecting the small cell as a cluster head for a cluster of the small cells based on the estimated aggregate backhaul bandwidth utilization, the cluster including at least some of the small cells; and communicating, via the cluster head, information between a network entity and the small cells of the cluster.
Abstract:
Techniques for aggregating wireless communications are provided. These techniques include a method for aggregating wireless communications traffic in a femtocell. The method includes receiving at a femtocell a stream of data packets for a mobile device from a wireless router, selecting a transmission mode for sending data packets of the stream of data packets from the femtocell to the mobile device. The first transmission mode includes transmitting the data packets from the stream via a Long Term Evolution (LTE) interface of the femtocell. The second transmission mode includes transmitting the data packets from the stream via a WiFi interface of the wireless router. The third transmission mode includes transmitting a first portion of the data packets to the mobile device via the LTE interface and routing a second portion of the data packets to the wireless router for transmission to the mobile device via the WiFi interface.
Abstract:
Apparatus and methods are disclosed that provide various incentive schemes for owners of low-power base stations to allow others nearby to use their base station, enabling offloading of some users from a nearby macrocell, thus helping improve overall network performance. For example, a “win-win” scenario might exist when a sharing opportunity at a low-power base station overlaps with a sharing opportunity at the neighboring macrocell. During this overlap, when the low-power base station provides access to its air interface to one or more UEs outside of a set of UEs associated with the low-power base station, an incentive credit may be received. Incentive credits can take various forms, and in some examples, may be in an amount that is a function of an amount of contribution to the network resulting from the provision of access to the air interface.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus communicates using a first radio based on a first radio technology and configures a second radio based on a second radio technology different from the first radio technology to receive signals transmitted based on a radio technology different from the second radio technology. The apparatus also measures a quality indicator of a signal received at the second radio. The signal is transmitted based on the radio technology different from the second radio technology.
Abstract:
Management of user equipment (UE) proximity indications to femto access points is provided using out-of-band (OOB) signals. To obtain OOB identification information on the femto access point, the UE determines the OOB identification information when in proximity to cells neighboring the femto access point. This OOB information is stored in a search information database (SID) of the UE and related to in-band information on the femto access point. To later determine proximity to the femto access point, in response to detecting its presence within a fingerprint area around the femto access point, a search for the femto access point is triggered using the OOB radio resources and OOB identification information associated with the femto access point in the SID. When the UE detects the femto access point using the OOB radio resources, the UE transmits a proximity indication to its serving base station over the in-band radio link.