Abstract:
A rectifier transformer comprises two secondary windings, preferably with a single turn on each winding. The rectifier diodes form an integral part of each of the secondary windings. Thus, a compact arrangement is realised. In a high voltage application, the rectifier diodes comprise a plurality of relatively low voltage diodes in parallel to one another. The overall capacitance of the rectifier circuit is reduced by this arrangement.
Abstract:
A pulse circuit forms part of a radar transmitter in which a pulse forming network is used to generate a high current pulse at relatively low voltage and to feed it via a transformer to a magnetron which operates at typically 30 kV. A number of pulse forming networks are connected in parallel and are discharged by respective thyristors. The outputs of the pulse forming networks are combined so as to provide a low voltage pulse (of the order of 600 volts) having sufficient power to drive a radar transmitter. The pulse forming networks must each be capable of handling very large current and must have characteristics which are identical to each other. To enable these requirements to be met, each pulse forming network includes an inductor which is formed as a coiled thin conductive layer lying on the surface of an electrically insulating board. It is formed by printed circuit board techniques and a mirror image coil is formed on both sides of a double sided printed circuit board. All pulse forming networks are connected via a common double sided printed circuit board to the primary winding of a pulse transformer.
Abstract:
The disclosure provides methods and devices for enabling a Vessel propelled by a Kite or similar devices, e.g., a balloon, to adjust its direction of travel to either side of the true wind direction without the aid of rudder(s), tiller(s), or similar devices. The subject invention applies to wind-powered Vessels as well as hybrid vessels and vessels utilizing propeller-driven propulsion, jot propulsion and others in addition to wind power.
Abstract:
There is provided an improved roof solar panel, embodying an array of photovoltaic cells mounted on conventional modular roof sheathing, that can be readily and easily installed onto a conventional sloped roof and integrated into conventional roof shingles. Such panel includes a shingle mounting surface on a perimeter area of the sheathing, a flash strip mounted inside such shingle mounting surface and, when installed on the roof, a retainer trim for securing shingles mounted on said shingle mounting surface, while mounting to the flash strip and sealing to a perimeter of a rigid transparent protective sheet over the array. The retainer trim also serves to provide means for securing the panel onto roof trusses. Integration with the conventional roof shingling provides, inter alia, an attractive low profile with improved water shedding and wind resistance properties. There is also an intermediate roof solar panel, for installation on a roof so as to provide the aforementioned improved roof solar panel. The invention also relates to a kit comprising, inter alia, said intermediate roof solar panel, and to a method of installing said intermediate roof solar panel.
Abstract:
An interconnection for connecting a switched mode inverter to a load, the interconnection comprising: a plurality of insulated conductors (311-313, 321-323); sleeving means (351) sleeving the insulated conductors together; and at least one lossy toroidal inductor core (352) concentric with and partially surrounding the sleeving means to hold the plurality of insulated conductors together; wherein the at least one lossy toroidal inductor core (352) is arranged to act as a common mode inductor to minimise current flowing through the interconnection to a stray capacitance of the load. Preferably, high frequency eddy current effects are minimised in the interconnection by a suitable choice of diameters of conductive cores of the plurality of insulated conductors and the spacing between the centres of the conductive cores.
Abstract:
An inductive filter for a magnetron power supply lead comprises an electrically insulating tube; a power lead located partially within the electrically insulating tube, and coaxial therewith, for supplying power from a magnetron power supply to a magnetron, a first core of a first magnetic material and a second core of a second magnetic material coaxially located on the electrically insulating tube; an insulating disc of same external diameter as the first core and the second core and coaxially located on the electrically insulating tube between the first core and the second core. The inductive filter is arranged to filter noise of a first frequency band and noise of a second, different, frequency band different from being transmitted along the power lead and to absorb a predetermined transient voltage from being transmitted along the power lead.
Abstract:
A transformer comprises a primary winding having a first plurality of magnetic circuits each with a second plurality of turns and electrically connected in parallel and a secondary winding comprising a third plurality of magnetic circuits each with a fourth plurality of turns and electrically connected in series. The primary winding is electromagnetically coupled to the secondary winding by a single turn electrically conductive loop.
Abstract:
A switching arrangement for a high voltage load provides high voltage pulses to the load. The switching arrangement includes switching modules, where n is typically (75). A load capacitance is Cd is required to avoid voltage overshoot at the load and is provided by a capacitance of nCd arranged in parallel with each switch.
Abstract:
A high voltage switching apparatus delivers kV pulses to a load such as a magnetron. The switching apparatus comprises a switching stack surrounded by capacitors and both arranged within a housing. Lt power is supplied to the stack, e.g. for control electronics, by magnetic coupling across a non-conducting wall of the housing. Annular inserts are arranged on either side of the wall. Each insert receives a transformer core and winding. The bottom surfaces of the inserts carry a conductive coating to minimise electric stresses. Ht power is also supplied through the wall.
Abstract:
A switching arrangement for a high voltage load provides high voltage pulses to the load. The switching arrangement includes N switching modules where N is typically 75. A load capacitance of Cd is required to avoid voltage overshoot at the load and is provided by a capacitance of nCd arranged in parallel with each switch. In addition, a graded capacitance is arranged across each switch. The graded capacitance compensates for unequal voltage sharing during high transience. The graded capacitance and the distributed load capacitance may be arranged as a single capacitance across each switch.