Abstract:
Provided is a porous aluminum body capable of being used as a heat transfer material having a very large specific surface area, a good heat-exchange efficiency, and a low pressure drop of a gas. The porous aluminum body contains aluminum as a main component. The porous aluminum body has a three-dimensional network structure and has a specific surface area (Y) represented by a (Formula) below. (In the (Formula), Y represents a specific surface area [m 2 /m 3 ], X represents the number of cells [per inch], and a represents a number of 100 or more and 1,000 or less.)
Abstract:
Provided are a manufacturing method and a manufacturing apparatus for an aluminum film in which moisture and oxygen do not intrude into a plating chamber. A manufacturing method for an aluminum film, in which aluminum is electrodeposited on a surface of a long, porous resin substrate imparted with electrical conductivity in a molten salt electrolytic solution, includes a step of transferring the substrate W into a plating chamber 1 through a sealing chamber 4 disposed on the entrance side of the plating chamber; a step of electrodepositing an aluminum film on the surface of the substrate W in the plating chamber 1; and a step of transferring the substrate having the aluminum film electrodeposited thereon from the plating chamber 1 through a sealing chamber 5 disposed on the exit side of the plating chamber 1, in which an inert gas is supplied into the plating chamber such that the plating chamber has a positive pressure relative to outside air, and the inert gas is forcibly discharged from an inert gas exhaust pipe 7 provided on each of the two sealing chambers.