Abstract:
The present disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a higher data transfer rate after a 4th generation (4G) communication system such as long term evolution (LTE). A method for operating of a transmitting end in a wireless communication system includes allocating a first resource for a first service and a second resource for a second service, determining a precoder for controlling interference between the first service and the second service, precoding a first signal for the first service using the precoder, and transmitting the precoded first signal and a second signal for the second service through the first resource and the second resource. At least one part of the first resource overlaps with the second resource.
Abstract:
The present disclosure relates to a method and device for providing different services in a mobile communication system. In an embodiment, a base station sets interference influence information including information about interference of a second signal of a second system using a second. TTI with regard to a first signal of a first system using a first transmission time interval (TTI). Also, the base station transmits the first signal of the first system to a terminal, and transmits the interference influence information to the terminal in a predetermined time. In a situation where different services coexist, an HARQ retransmission technique is provided for effectively overcoming a transmission failure caused by influence of interference between services.
Abstract:
The present disclosure relates to a 5G or a pre5G communication system to be provided for supporting a higher data transmission rate after 4G communication systems, such as LTE. According to embodiments of the present invention, a method and an apparatus for receiving signals in a mobile communication system may be provided, the method comprising the steps of: receiving a second signal including an interference signal of a first signal transmitted by a first terminal and a first signal transmitted by a second terminal; obtaining information related to the interference signal; removing the interference signal on the basis of the obtained information; and decoding the first signal after removing the interference signal from the second signal, wherein the information related to the interference signal includes resource block allocation information with respect to the interference signal and/or a reference signal for demodulating the interference signal.
Abstract:
A method of receiving a signal by a receiver in a mobile communication system is provided. The method includes: receiving a reference signal from a transmitter; determining first channel information based on the received reference signal; receiving a data signal based on the first channel information; and determining second channel information based on the received data signal and the first channel information. Iterative channel estimation is performed to reduce channel estimation errors by determining errors of signals received from a turbo decoding unit and using symbol information as pilots even in subcarriers where the pilot signals are not transmitted, and to increase the accuracy of LLR calculation through an iteration process such as a detection and decoding process in comparison with the conventional technology, thereby increasing the reception performance of the turbo decoding unit and improving communication efficiency.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). An operating method for controlling interference between base stations in a wireless communication system includes determining at least one or more beam indexes of a first base station, receiving resource information of a second base station from the second base station, determining a frequency resource of the first base station, based on the at least one or more beam indexes of the first base station and the resource information of the second base station, and communicating with a user equipment, using information about the determined frequency resource of the first base station.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A system and method for constructing an interference component using a detected data symbol and an estimated channel response in a non-orthogonal system and a method of estimating a channel using a structure of the non-orthogonal system and the interference component is disclosed. The system includes a receiver that receives a reference signal and data transmitted from a transmitter; detects adjacent data symbols around the reference signal; estimating an initial channel state; constructs the interference signal on the basis of the adjacent data symbols and the initial channel state; estimates the channel state on the basis of the constructed interference signal; and performing an iterative process of reconstructing the interference signal on the basis of the estimated channel state and re-estimates the channel state on the basis of the reconstructed interference signal.
Abstract:
A method of forming a beam-link by a Base Station (BS) in a wireless communication system using a beamforming scheme includes determining at least one downlink beams to be used for downlink transmission and/or reception, transmitting a reference signal to a Mobile Station via the at least one downlink beam, receiving the reference signal via an uplink beam from the Mobile station, and updating the at least one downlink beam to increase a Signal-to-Noise Ratio (SNR). Accordingly, a beam-link using an initial beam-link between the BS and the MS and adaptive beamforming can be rapidly constructed in a high frequency band BDMA cellular system.
Abstract:
A method of forming a beam-link by a Base Station (BS) in a wireless communication system using a beamforming scheme includes determining at least one downlink beams to be used for downlink transmission and/or reception, transmitting a reference signal to a Mobile Station via the at least one downlink beam, receiving the reference signal via an uplink beam from the Mobile station, and updating the at least one downlink beam to increase a Signal-to-Noise Ratio (SNR). Accordingly, a beam-link using an initial beam-link between the BS and the MS and adaptive beamforming can be rapidly constructed in a high frequency band BDMA cellular system.
Abstract:
The present disclosure relates to a method and device for providing different services in a mobile communication system. In an embodiment, a base station sets interference influence information including information about interference of a second signal of a second system using a second TTI with regard to a first signal of a first system using a first transmission time interval (TTI). Also, the base station transmits the first signal of the first system to a terminal, and transmits the interference influence information to the terminal in a predetermined time. In a situation where different services coexist, an HARQ retransmission technique is provided for effectively overcoming a transmission failure caused by influence of interference between services.
Abstract:
The present disclosure relates to a 5th (5G) generation or pre-5G communication system for supporting a higher data transmission rate beyond a 4th (4G) generation communication system such as long term evolution (LTE). An operating method of a base station in a wireless communication system may include identifying a resource for transmitting at least one sequence for interference measurement of another base station, based on information received from a management device, and transmitting the at least one sequence through the resource, the information received from the management device may include information of the at least one sequence and the resource, and the information of the at least one sequence and the resource may be generated based on a grouping result of base stations based on an operating frequency.