Abstract:
A method for controlling a wind turbine system including an electrical generator, a power converter system, a DC-link, and at least a grid-side breaker arrangement controllable between open and closed states, wherein the method comprises monitoring for the presence of a shutdown event and, in response to identifying the presence of a shutdown event, controlling the wind turbine into a production-ready state, comprising: i) controlling the grid-side breaker arrangement in the closed state; ii) disabling one or more drive signals to the power converter system; and iii) controlling the DC-link of the power converter system in a charged state. Advantageously, this approach reduces the frequency of use of the grid-side breaker arrangement which extends serviceable life considerably, and also allows the wind turbine system to be transitioned rapidly between an operating state and a production-ready state.
Abstract:
A method of setting a reference DC-link voltage of a wind-turbine converter system is provided. At least at least one DC voltage demand from at least one generator-side inverter and at least one DC voltage demand are received from at least one grid-side inverter. A generator-side DC voltage demand value on the basis of the at least one DC voltage demand received from the at least one generator-side inverter. Also a grid-side DC voltage demand value is determined on the basis of the at least one DC voltage demand received from the at least one grid-side inverter. The highest DC voltage demand value out of the generator-side and grid-side DC voltage demand values is chosen. This chosen value corresponds to the set reference DC-link voltage.
Abstract:
A wind turbine generator 1 supplies three-phase a.c. current of variable voltage and variable frequency to two pairs of rectifiers 4a, 4b and 4c, 4d which generate respective d.c. outputs connected to positive, negative and neutral d.c. conductors 6, 7, 8. The outputs from each pair of rectifiers are connected together, and the outputs from the two pairs are connected in series to create a high-voltage d.c. output. Inverters 10a, 10b, 10c, 10d then convert the d.c. power to a.c. at a fixed frequency and voltage suitable for In connection to the mains grid. To reduce the effect of common-mode noise, a capacitor is connected between the 1 neutral conductor 7 and earth, and a respective filter circuit 30 is connected between each of the a.c. outputs of the inverters 10a, 10b, 10c, 10d and earth. To reduce the effect of voltage surges during lightning, a surge protection device is also connected between the neutral d.c. conductor 7 and earth. Any imbalance in the current in the positive and negative conductors 6, 8 is compensated by detecting the presence of current flowing in the neutral conductor 7. Power supplied to auxiliary circuits from the output of one of the inverters, e.g. 10a, of the wind turbine is measured, and any resulting imbalance between the current in the positive and negative conductors is compensated. In the event of an earth-leakage fault in the conductors connecting the a.c. outputs of the inverters to the grid, when isolated, isolation detection relays 25 are provided.
Abstract:
According to an embodiment, a power generation system is provided comprising a power generator; a plurality of converter modules, each converter module having a DC link, wherein the DC link of each converter module is connected to the DC links of the other converter modules of the plurality of converter modules via a fuse associated with the converter module; and a controller configured to, if it is detected that there is a fault in one of the converter modules, disconnect the converter module in which there is a fault from the power generator and connect two or more other converters module of the plurality of converter modules to the power generator and to control the power generation system to supply power to the DC links of the two or more other converter modules such that power is supplied to the converter module in which there is a fault via the fuse associated with the converter module such that the fuse associated with the converter module melts.
Abstract:
According to an embodiment, a power generation system is provided comprising a power generator; a plurality of converter modules, each converter module having a DC link, wherein the DC link of each converter module is connected to the DC links of the other converter modules of the plurality of converter modules via a fuse associated with the converter module; and a controller configured to, if it is detected that there is a fault in one of the converter modules, disconnect the converter module in which there is a fault from the power generator and connect two or more other converters module of the plurality of converter modules to the power generator and to control the power generation system to supply power to the DC links of the two or more other converter modules such that power is supplied to the converter module in which there is a fault via the fuse associated with the converter module such that the fuse associated with the converter module melts.
Abstract:
A method of monitoring a split wind-turbine-converter system with at least one generator-side converter and at least one grid-side converter arranged at distant locations, and a DC-link in the form of an elongated conductor arrangement with at least one positive and at least one negative conductor. The impedance of the DC-link conductor arrangement is determined by means of DC-voltage sensors. The voltages between the positive and the negative conductors are determined at the generator-side converter and at the grid-side converter, and the difference between the voltages is determined. The impedance of the DC-link conductor arrangement is determined by putting the determined voltage difference in relation to the DC current flowing through the DC-link conductor arrangement. If the impedance exceeds a given impedance threshold a fault state is recognized.
Abstract:
A wind turbine converter system with a rectifier and an inverter and a converter controller has at least first and second converter strings. The converter system is controlled by a master-converter controller and a slave-converter controller. The master-converter controller controls the first converter string and the slave-converter controller controls the second converter string. The master-converter controller receives commands from a superordinate wind turbine controller, provides the slave-converter controller with string-control commands on the basis of the superordinate control commands, and controls the conversion operation of the first converter string on the basis of the superordinate control command. The slave-converter controller receives the string-control commands from the master-converter controller and controls the conversion operation of the second converter string on the basis of the string-control commands received. The first and the second converter strings can be arranged in a bipolar configuration giving access to a neutral point. Fault detection can be performed based on current through the neutral. The system is capable of fault ride-through. Also, in case of failure of the master-converter controller, a redundant unit takes its place.