Abstract:
An apparatus includes a digital camera configured to capture a plurality of images of a region of a body of a subject, a photoplethysmography (PPG) sensor configured to sense blood flow information from the subject, and a processor in communication with the digital camera and the PPG sensor. The processor is configured to analyze a blood flow information signal from the PPG sensor and determine a heart rate frequency and/or a breathing rate frequency of the subject. The processor is also configured to analyze the plurality of images and determine whether or not a portion of the region of the body is modulating at a frequency that is similar to the heart rate frequency and/or the breathing rate frequency of the subject.
Abstract:
An earbud includes a speaker driver, and a sensor módule secured to the speaker driver that is configured to detect and/or measure physiological information from a subject wearing the earbud. The sensor module includes a printed circuit board, an optical source secured to the printed circuit board, and an optical detector secured to the printed circuit board. A first light guide may be coupled to the optical source that is configured to deliver light from the optical source into an ear region of the subject via a distal end thereof. A second light guide may be coupled to the optical detector that is configured to collect light from the ear region via a distal end thereof and deliver collected light to the optical detector. One or more additional sensors may be secured to the speaker driver, such as accelerometers, humidity sensors, altimeters, and temperature sensors.
Abstract:
A monitoring device configured to be attached to the ear of a person includes a base, an earbud housing extending outwardly from the base that is configured to be positioned within an ear of a subject, and a cover surrounding the earbud housing. The base includes a speaker, an optical emitter, and an optical detector. The cover includes light transmissive material that is in optical communication with the optical emitter and the optical detector and serves as a light guide to deliver light from the optical emitter into the ear canal of the subject wearing the device at one or more predetermined locations and to collect light external to the earbud housing and deliver the collected light to the optical detector.
Abstract:
A monitoring device configured to be attached to a subject includes a sensor configured to detect and/or measure physiological information and a processor coupled to the sensor. The sensor includes at least one optical emitter and at least one optical detector. The processor receives and analyzes signals produced by the sensor, and the processor changes wavelength of light emitted by the at least one optical emitter in response to detecting a change in subject activity. For example, the processor instructs the at least one optical emitter to emit shorter wavelength light in response to detecting an increase in subject activity, and the processor instructs the at least one optical emitter to emit longer wavelength light in response to detecting an decrease in subject activity. Detecting a change in subject activity may include detecting a change in at least one subject vital sign and/or subject motion.
Abstract:
A monitoring device includes a biasing element having opposite first and second end portions, an earbud attached to the biasing element first end portion, and a sensing element attached to the biasing element second end portion. The earbud has a first mass, and the sensing element has a second mass that is less than the first mass. The biasing element is configured to urge the sensing element into contact with a portion of the ear when the earbud is inserted into the ear. The biasing element decouples motion of the earbud from the sensing element. The sensing element includes at least one energy emitter configured to direct energy at a target region of the ear and at least one detector configured to detect an energy response signal from the target region or a region adjacent the target region.
Abstract:
A monitoring device configured to be attached to the ear of a person includes a base, an earbud housing extending outwardly from the base that is configured to be positioned within an ear of a subject, and a cover surrounding the earbud housing. The base includes a speaker, an optical emitter, and an optical detector. The cover includes light transmissive material that is in optical communication with the optical emitter and the optical detector and serves as a light guide to deliver light from the optical emitter into the ear canal of the subject wearing the device at one or more predetermined locations and to collect light external to the earbud housing and deliver the collected light to the optical detector.
Abstract:
A method of monitoring a subject includes attaching a sensor module having at least one optical emitter and detector to a body of the subject, delivering light from the at least one optical emitter into the body of the subject via a first light guide that is in optical communication with the at least one optical emitter, and collecting light from the body of the subject via a second light guide that is in optical communication with the at least one optical detector. The first light guide has a proximal end optically coupled to the at least one optical emitter and delivers light from the at least one optical emitter via a distal end thereof. The second light guide has a proximal end optically coupled to the at least one optical detector and collects light from the body of the subject via the distal end thereof.
Abstract:
A monitoring device configured to be attached to the ear of a person includes a base, an earbud housing extending outwardly from the base that is configured to be positioned within an ear of a subject, and a cover surrounding the earbud housing. The base includes a speaker, an optical emitter, and an optical detector. The cover includes light transmissive material that is in optical communication with the optical emitter and the optical detector and serves as a light guide to deliver light from the optical emitter into the ear canal of the subject wearing the device at one or more predetermined locations and to collect light external to the earbud housing and deliver the collected light to the optical detector.