Abstract:
An apparatus for chemical separations includes a microfluidic substrate having an outlet aperture for outputting an eluent of a sample. An emitter assembly includes having a deformable end portion, an inlet near the deformable end portion to receive the sample eluent from the microfluidic substrate, and an electrically conductive outlet portion to emit a spray of the sample eluent. A force-applying unit applies a force to the emitter assembly that urges the deformable end portion into contact with the microfluidic substrate. The deformable end portion is more elastic than the microfluidic substrate so that the contact between the microfluidic substrate and the deformable end portion produces a substantially fluid-tight seal between the outlet aperture of the microfluidic substrate and the inlet of the emitter assembly.
Abstract:
An apparatus for chemical separations includes a microfluidic substrate having an outlet aperture for outputting an eluent of a sample. An emitter assembly includes having a deformable end portion, an inlet near the deformable end portion to receive the sample eluent from the microfluidic substrate, and an electrically conductive outlet portion to emit a spray of the sample eluent. A force-applying unit applies a force to the emitter assembly that urges the deformable end portion into contact with the microfluidic substrate. The deformable end portion is more elastic than the microfluidic substrate so that the contact between the microfluidic substrate and the deformable end portion produces a substantially fluid-tight seal between the outlet aperture of the microfluidic substrate and the inlet of the emitter assembly.
Abstract:
An apparatus for chemical separations includes a microfluidic substrate having an outlet aperture for outputting an eluent of a sample. An emitter assembly includes having a deformable end portion, an inlet near the deformable end portion to receive the sample eluent from the microfluidic substrate, and an electrically conductive outlet portion to emit a spray of the sample eluent. A force-applying unit applies a force to the emitter assembly that urges the deformable end portion into contact with the microfluidic substrate. The deformable end portion is more elastic than the microfluidic substrate so that the contact between the microfluidic substrate and the deformable end portion produces a substantially fluid-tight seal between the outlet aperture of the microfluidic substrate and the inlet of the emitter assembly.
Abstract:
An apparatus for chemical separations includes a microfluidic substrate having an outlet aperture for outputting an eluent of a sample. An emitter assembly includes having a deformable end portion, an inlet near the deformable end portion to receive the sample eluent from the microfluidic substrate, and an electrically conductive outlet portion to emit a spray of the sample eluent. A force-applying unit applies a force to the emitter assembly that urges the deformable end portion into contact with the microfluidic substrate. The deformable end portion is more elastic than the microfluidic substrate so that the contact between the microfluidic substrate and the deformable end portion produces a substantially fluid-tight seal between the outlet aperture of the microfluidic substrate and the inlet of the emitter assembly.
Abstract:
An apparatus for use in a chromatography system includes a first microfluidic substrate having a first fluidic channel. One end of the first fluidic channel terminates at a first fluidic port on a first side of the first microfluidic substrate and an opposite end of the first fluidic channel terminates at a second fluidic port on a second side of the first microfluidic substrate. A second microfluidic substrate has a second fluidic channel. One end of the second fluidic channel terminates at a first fluidic port on a first side of the second microfluidic substrate. The first side of the second microfluidic substrate abuts the second side of the first microfluidic substrate such that the fluidic port of the second microfluidic substrate aligns with one of the fluidic ports of the first microfluidic substrate and the alignment produces a fluidic path comprised of the first and second fluidic channels.
Abstract:
A microfluidic device, for use in separation systems, includes a substrate having a fluidic channel. One or more heaters made of a thick film material are integrated with the substrate and in thermal communication with the fluidic channel of the substrate. The one or more heaters produce a thermal gradient within the fluidic channel in response to a current flowing through the one or more heaters. A plurality of electrically conductive taps can be in electrically conductive contact with the one or more heaters. The plurality of electrically conductive taps provides an electrically conductive path to the one or more heaters by which an electrical supply can produce the current flowing through the one or more heaters. Alternatively, the thick film material can be ferromagnetic, and the electrical supply can use induction to cause the current to flow through the one or more heaters.