Abstract:
In 3-D printing a platen moves toward an intermediate transfer belt (ITB) to have a sheet positioned on the platen contact the ITB to electrostatically transfer a layer of different materials to the sheet, and then the platen moves to a heater to join the layer to the sheet. This processing is repeated to have the sheet repeatedly contact the ITB (with intervening heating at the heater) to successively form layers of the materials on the sheet. The sheet having the layers thereon moves to a rinsing station, where a liquid is applied to dissolve the sheet and leave a freestanding stack of the layers. The freestanding stack is fed to a platform to successively form a 3-D structure of freestanding stacks of the layers. Light and/or heat are applied to the 3-D structure to bond the freestanding stacks to one another on the platform.
Abstract:
A universal gripper of objects includes two elastomer membranes separating a bed of rounded tipped nails that allow for object conformation. The object is pushed into a membrane that contacts the object with a known air pressure behind an inner membrane inside the gripper. The air pressure provides conformance and maximum resolution of object curvature to the bed of nails. At least one pin guide and locking plate having flexure fingers is actuated causing a small displacement which clamps each nail in its deformed position. The air pressure on the inner membrane is now removed and afterwards, a vacuum blower is turned ON causing the object to be gripped for removal from a staging platen and moved to a position to receive an image from a printer.
Abstract:
Methods and systems related to the three-dimensional (3D) printing of build structures including a plurality of 3D objects embedded within a support matrix are provided.
Abstract:
A method of operating a cleaning system removes support material from parts made by a three-dimensional printer. The method operates the cleaning system to correlate data for features on a part located within a receptacle with structural data in a file used by the three-dimensional printer to fabricate the part. The method then operates one or more actuators to locate a fluid directing nozzle pneumatically connected to a pressurized fluid source opposite areas containing support material and operates the pressurized fluid source to enable pressurized fluid to be directed by the fluid directing nozzle at the support material. The method includes generating image data of the cleaned areas with an image sensor so the removal of the support material can be confirmed, and if an area is not sufficiently cleaned, the cleaning operation can be repeated.
Abstract:
A three-dimensional object printer enables production of cylindrically shaped objects. The printer includes a controller operatively connected to at least two printheads, at least one object treating device, and actuator that is operatively connected to a cylindrical member being supported by at least two supports. The controller is configured to operate the actuator to rotate the cylindrical member within the at least two supports, to operate the plurality of ejectors in each of the at least two printheads to form portions of layers on the rotating cylindrical member with the different materials supplied to the at least two printheads, and to operate the at least one object treating device to modify the layers formed on the rotating cylindrical member while the cylindrical member is rotating within the at least two supports.
Abstract:
A method of manufacturing a three-dimensional object facilitates the removal of support material from the object. The method includes moving the object to a position opposite a microwave radiator and operating the microwave radiator to change the phase of the support material from solid to liquid. A controller either monitors the expiration of a predetermined time period or a temperature of the object to determine when the microwave radiator operation is terminated. The microwave radiation does not damage the object because the support material has a dielectric loss factor that is greater than the dielectric loss factor of the object.
Abstract:
A mobile cart that moves through a three-dimensional object printing system includes a platform, and at least one bearing operatively connected to the platform and configured to engage with a lower surface of a rail of the printing system in order to locate the platform with respect to an ejector head positioned opposite the rail. The cart further includes at least one other bearing operatively connected to the platform and configured to engage with an upper surface of the rail and apply a bias force that urges the at least one bearing against the lower surface of the rail. The rail can be configured to block material ejected by the ejector head from reaching the lower surface thereon.
Abstract:
The present disclosure relates to using color calibration to improve and increase the accuracy of interpreting color-sensitive results from test strips made of substrates like paper. This is accomplished via a diagnostic test unit including a substrate, at least one region on the substrate, a reagent placed within the region to react, and a series of color legends on the substrate. Different reagent samples may be placed on the separate regions of a substrate for testing. An imaging device is used to capture the reaction results. More precise readings can be obtained by comparing the reaction results to the color legends to determine the measured property of the analyte.
Abstract:
A generic holder includes a generic holder plate and a 3-D insert plate. The 3-D insert plate contains locating features mirrored to the backside of the part to be printed and vacuum grippers to secure the part in the insert plate. The insert plate is secured in the generic holder plate that includes vacuum couplings. The part is located on the insert plate and vacuum is applied to the generic holder plate and insert plate to hold the part for printing.
Abstract:
A three-dimensional printing system includes a build platform comprising a build surface. The printing system also includes an enclosure system having a side portion extending entirely around the build surface, a top plate portion that abuts the side portion, and a bottom portion. The side portion, the top plate portion and the bottom portion form an enclosed space surrounding the build surface. The top plate portion is moveable so as to adjust a volume of the enclosed space. A 3D printer printhead is disposed adjacent to the enclosure system for depositing a print material onto the build surface. The printing system also includes a heating system for heating the enclosed space.