Abstract:
An apparatus for supplying water containing dissolved gas comprising a flowmeter for measuring a flowrate of pure or ultra-pure water and a mechanism for controlling a flowrate, a means for adjusting an amount of water which adjusts an amount of the pure or ultra-pure water supplied to the apparatus for dissolving a gas, a tank which receives the water containing dissolved gas in an excessive amount which is not used at a point of use, a piping system through which the water containing dissolved gas glows from the tank towards the point of use and the water containing dissolved gas in an excessive amount returns to the tank, a piping system for supplying the water containing dissolved gas to the tank, and a controlling means for adjusting an amount of water based on a water level in the tank.
Abstract:
A gas transfer system and method for dissolving at least one gas into a liquid. The system includes a gas transfer vessel also known as a reactor. A liquid inlet feed is connected to the reactor for transferring the liquid into the reactor. A gas inlet is connected to the reactor for feeding the gas into the reactor. An outlet is connected to the reactor for transferring the liquid with at least some of the gas therein away from the reactor. The system also includes a feed pump connected to the inlet feed to pressurize the contents of the inlet feed and the reactor, and a regenerative turbine connected to the feed pump and to the outlet. The various embodiments of the gas transfer system use pressurization in the gas transfer vessel to enhance gas transfer therein, minimize the net energy consumption, and retain highly supersaturated dissolved gas in solution. Some embodiments further help to reduce effervescence loss. The method of the present invention utilizes the system of the present invention and operates the feed pump and regenerative turbine to accomplish these advantages.
Abstract:
A substrate cleaning method of the present invention enables effective cleaning of a wafer having a recess therein without causing any increase in cleaning costs. Ozone gas and ammonia water are supplied to an area right above a wafer 7 having a recess therein, and a gas-dissolving liquid is produced by dissolving the ozone gas in the ammonia water. The gas-dissolving liquid is used to carry out contact and non-contact types of physical cleaning on the wafer.
Abstract:
The present invention relates to a process of oxidation, of the wet oxidation or ozonization type, of a liquid contained in a reactor. The gas of the gas headspace is aspirated into the liquid, and the portion which is not dissolved in the liquid is recovered in the gas headspace. The agitation means creates a flow of liquid immediately adjacent to the end of the duct opening into the liquid, and generates a gas/liquid dispersion in the zone, within which the liquid reacts with the gas, then conveys and ejects the said dispersion at its periphery, such that the gas is dissolved in the liquid in the zone extending from the agitation means to the surface of the liquid. The said process is particularly suitable for oxidations which make use of considerable quantities of oxygen or of ozone. It is particularly applied for the oxidation of papermaking liquors.
Abstract:
A method and apparatus for dissolving an gas into a fluid which may contain at least one dissolved gas. In one embodiment, the apparatus includes a first vertically oriented tube defining a first inner space therein and having open upper and bottom ends. The apparatus also includes a second vertically oriented tube of diameter larger than the first tube and concentrically oriented about the first tube. The space between the first and second tubes is referred to as the second inner space. For introduction of the gas, the apparatus includes an inlet into the second inner space. The appartus includes an acceleration device for accelerating the flow of fluid through the second inner space. The acceleration device is placed above the bubble swarm. Further, the apparatus includes a helix-shaped bubble harvester located below the bubble swarm. The harvester removes fugitive (undissolved) bubbles from the fluid flow and returns them to the bubble swarm to increase the probability that those bubbles will be dissolved into the fluid. During operation, fluid is accelerated downward through the second inner space to maintain two phase flow in the bubble swarm. The harvester removes fugitive bubbles from the fluid leaving the bubble swarm and returns them to the bubble swarm to enhance the absorption rate and efficiency. In another embodiment of the invention, at least one gas initially dissolved into the fluid and then stripped by the reduced partial pressure in the bubble swarm is allowed to leave the apparatus through a vent. The present invention operates with hydrostatic pressure applications and in applications using externally supplied oxygen. It is inexpensive to produce, install, operate and maintain, while being capable of producing a significant amount of dissolved gas with a high absorption efficiency and low energy consumption. The apparatus and method are also suitable for a multitude of applications.
Abstract:
A gas solution producing device having a simple structure to reduce a start-up time, and capable of reducing an amount of gas or solution for use, and a method therefor, as well as a cleaning device employing them. An ozone water solution producing device of the present invention includes a gas dissolving module for bringing ozone gas and deionized water in contact with each other for production of ozone solution, a gas introducing pipe for introducing ozone gas from an ozone gas producing device to the gas dissolving module, a buffer, connected on the gas introducing pipe, for temporarily storing ozone gas and thereafter discharging the gas stored to the gas introducing pipe, a first valve for opening or closing the gas introducing pipe to switch introduction and suspension of gas flow to the gas dissolving module, and backflow prevention valve for preventing a backflow of the gas discharged from the buffer.
Abstract:
The invention concerns a device enabling the gas bubbles present in a liquid composition to be dissolved. The device comprises a chamber (10) provided with an inlet orifice (11) through which the composition to be debubbled is introduced, and an outlet orifice (12) through which the debubbled composition is discharged, an ultrasonic transducer (13, 14, 15, 16, 17, 18, 19, 20), a power supply (21) for supplying the said transducer, the said power supply (21) being regulated in frequency and power at the same time.
Abstract:
This invention concerns an apparatus and a method for producing carbonated water capable of obtaining high concentration carbonated water effectively. Carbon dioxide gas is passed through a first carbon dioxide gas dissolver composed of a membrane module to be dissolved in water and the carbonated water passing through the first carbon dioxide gas dissolver is passed through a static mixer, which is a second carbon dioxide gas dissolver. Consequently, a high concentration carbonated water can be obtained remarkably, effectively and easily with a simpler structure than conventionally.
Abstract:
This invention concerns an apparatus and a method for producing carbonated water capable of obtaining high concentration carbonated water effectively. Carbon dioxide gas is passed through a first carbon dioxide gas dissolver (7) composed of a membrane module to be dissolved in water and the carbonated water passing through the first carbon dioxide gas dissolver (7) is passed through a static mixer (13), which is a second carbon dioxide gas dissolver. Consequently, a high concentration carbonated water can be obtained remarkably, effectively and easily with a simpler structure than conventionally.