Abstract:
[Object] To provide a method of purifying nucleic acids where the operation is simple and the nucleic acids can be extracted in a short time with high efficiency.[Solving Means] A method of purifying nucleic acids including the step of adsorbing substances in a sample containing nucleic acids with an ion exchange resin 10 including a positive ion exchange resin and a negative ion exchange resin. As the positive ion exchange resin, a first positive ion exchange resin and a second positive ion exchange resin having an exclusion limit molecular weight lower than that of the first positive ion exchange resin may be used.
Abstract:
Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.
Abstract:
The subject matter of the present invention is a process for the purification of a virtually anhydrous organic liquid other than DMSO alone, in order to decrease its content of alkali and alkaline-earth metal and metal cations, characterized in that it consists essentially in placing this organic liquid in contact with one or more cation exchange resins and in then separating from the resin(s) the purified organic liquid, said resin or at least one of said resins being a sulphonic resin in --SO.sub.3 H or --SO.sub.3 NH.sub.4 form based on a polystyrene-divinylbenzene copolymer having a divinylbenzene content of from 50 to 60% by weight, without taking the sulphonic groups into account.
Abstract:
A method for preparing non-agglomerating mixed bed ion exchange resin systems without affecting the ion exchange kinetics of the anion exchange resin component of the mixed bed system is disclosed. Pretreatment of the anion exchange resin component with a sulfonated poly(vinylaromatic) polyelectrolyte is particularly effective in providing non-agglomerated mixed bed systems without affecting ion exchange kinetics. Treatment levels of 10 to 800 milligrams per liter of anion exchange resin with sulfonated poly(vinylaromatic) polyelectrolyte having number average molecular weight from 5,000 to 1,000,000 are particularly preferred.
Abstract:
Disclosed is a metathetic process of the type M'X+M"=M'Y+M"X, where M' dirs from M" and the reagents and the products are water-soluble salts, comprising the steps of (a) transferring a solution of M"Y through at least one column containing cation exchanger beads loaded with M' cations, obtained in step (b) hereinafter, whereby cation exchange takes place to form a solution of M'Y and cation exchanger beads loaded with M", and (b) transferring a solution of M'X through said column containing cation exchanger beads loaded with M" obtained in step (a) above.
Abstract:
A method of removing low levels of ethylene oxide (1% by volume or less) from ethylene oxide contaminated gases is provided. The removal is effected by contacting the ethylene oxide with a solid, cationic ion exchange resin at conditions such that the quantity of water present in the reaction zone is at a level such that the reaction of the ethylene oxide with resin occurs at a gas-solid interface to form an ethylene oxide derivative polymer which is bound to said resin.
Abstract:
Water is demineralized by passage through a water demineralization system. The water demineralization system comprises a series of at least three ion exchange resin zones. The sequential series comprises a strong acid cation (SAC) resin zone, a first anion resin zone, and a weak acid cation (WAC) resin zone. The SAC resin zone comprises a SAC resin for removing cations from the water, the first anion resin zone comprises an anion resin for removing anions from the water, and the WAC resin zone comprises a WAC resin for removing cations from water without substantially splitting any salts present in the water. Means for connecting each resin zone in the series are provided so that water can pass sequentially through the system. A method is also provided for regenerating the WAC resin from sodium and ammonium exhaustants. This method comprises contacting the WAC resin with an aqueous solution of a regenerant that is substantially devoid of sulfur and halogen groups. The regenerant is selected from the group consisting of (a) organic acids, (b) inorganic acids, (c) amine salts of (a) and (b), (d) amines, and (e) combinations thereof.
Abstract:
A method for a quantitative separation of scandium from thorium comprises adsorption of both metals on a cation exchange resin followed by selective elution of scandium with an acidic solution of a chelating agent followed by the elution of thorium by a six normal hydrochloric acid solution.
Abstract:
A process for treating wash water from the manufacture of terephthalic acid, wherein the wash water includes terephthalic acid, metal catalyst, and organic acid byproducts. The process includes the steps of passing the wash water through a filter medium to remove undissolved terephthalic acid solids, passing the filtered water through a cation exchange resin in hydrogen ion form to remove the metal catalysts, and passing the water through an anion exchange resin to remove dissolved terephthalic acid and dissolved organic acid byproducts. The treated water and certain components removed from the wash water are recovered and reused in the manufacture of additional terephthalic acid. An apparatus in which the process is practiced is also described and, after a quantity of wash water has been treated, the apparatus is regenerated with regenerants that are also recovered and reused in the manufacture of additional terephthalic acid.
Abstract:
A heat exchange system and process for reducing bleed-off are disclosed employing a weak acid cation exchange resin for treating the aqueous liquid coolant. In one such system and process, the aqueous coolant is treated with a weak acid ion exchange resin to remove alkaline salts therefrom without removing salts of strong acids; suspended solids are removed from the circulating aqueous coolant; and an effective amount of additive selected from the group consisting of scale inhibitors, corrosion inhibitors, microbiocides, and mixtures thereof is introduced into the circulating aqueous coolant so that bleed-off from said system is substantially reduced.