Abstract:
Methods for forming discrete deformations in web materials are disclosed. In some embodiments, the method involves feeding a web into an apparatus having nips that are formed between intermeshing rolls. The apparatus may be in the form of nested or other arrangements of multiple rolls, in which the web is maintained in substantial contact with at least one of the rolls throughout the process, and at least two of the rolls define two or more nips thereon with other rolls. In some embodiments, rolls can be used to expose a different side of the web for a subsequent deformation step. In these or other embodiments, the rolls can be used to transfer the web between rolls in such a manner that it may offset the rolls and/or web so that subsequent deformations are formed at a different cross-machine direction location than prior deformations.
Abstract:
A sheet processing apparatus includes a binding unit configured to perform binding processing by pressing a sheet bundle, a motor configured to drive the binding unit to press the sheet bundle, a speed detection unit configured to detect a speed of the motor, a voltage detection unit configured to detect a driving voltage of the motor, and a motor control unit configured to determine an upper limit value of a driving current of the motor based on the speed detected by the speed detection unit and the driving voltage detected by the voltage detection unit in a period when the motor is being driven and the binding unit is not pressing the sheet bundle.
Abstract:
A sheet processing apparatus includes: a sheet fastening unit of a pressing fastener method in which a bundle of sheets is fastened by using a pair of pressing fastener members; a conveying unit that conveys the bundle of sheets that are fastened by the sheet fastening unit; a separating unit that, after the sheet fastening unit performs a fastening operation on the bundle of sheets, moves both one and the other pressing fastener members, between which the bundle of sheets is interposed, so as to separate a sheet that adheres to the pressing fastener member; and a control unit that, after the separating unit finishes an operation to separate the sheet, controls the conveying unit so as to convey the bundle of sheets that are fastened by the sheet fastening unit.
Abstract:
Methods for forming discrete deformations in web materials are disclosed. In some embodiments, the method involves feeding a web into an apparatus having nips that are formed between intermeshing rolls. The apparatus may be in the form of nested or other arrangements of multiple rolls, in which the web is maintained in substantial contact with at least one of the rolls throughout the process, and at least two of the rolls define two or more nips thereon with other rolls. In some embodiments, rolls can be used to expose a different side of the web for a subsequent deformation step. In these or other embodiments, the rolls can be used to transfer the web between rolls in such a manner that it may offset the rolls and/or web so that subsequent deformations are formed at a different cross-machine direction location than prior deformations.
Abstract:
A sheet processing apparatus configured to form a recessed portion at a portion at which a staple is driven into a sheet bundle from a sheet forming a surface of a side into which at least the staple is driven such that a sheet bundle to be discharged next on a sheet bundle stacking unit is stacked on a sheet bundle previously stacked on the sheet bundle stacking unit without catching on a staple of the previously stacked sheet bundle, and an image forming apparatus including the sheet processing apparatus.
Abstract:
An article includes a film and a non-woven having fibers, and an embossed seal joining a portion of the film and the non-woven. The seal includes discrete extended elements formed in the film and surrounded by lands in the film. The discrete extended elements having open proximal ends, open or closed distal ends, and sidewalls disposed between the proximal and distal ends, and portions of the discrete extended elements having a thickness less than that of the lands. Fibers of the non-woven are embedded in at least one of the lands and in the sidewalls of the discrete extended elements through the open proximal ends.
Abstract:
The present invention provides an integral net having a lattice of polymeric material defined by holes traversing the integral net from one surface to the other. The present invention also provides a method for producing an embossed sheet of polymeric material by first contacting a billet of polymeric material with an embossing tool having a plurality of protrusions whereby the embossing tool impresses indentations into the billet to a given depth. Subsequently, the method involves skiving the embossed billet. By this method, an embossed sheet of the polymeric material is removed from the billet, which embossed sheet can be an integral net.
Abstract:
Cellulosic webs can be embossed using an extended nip structure with embossing means in a controlled nip dwell zone. Single and multiply wipes and towels produced by plying together two or more such webs can be embossed. Webs having common caliper and basis weight can be processed using the extended nip structure with an appropriate embossing means. The tendency of the embossed relief to relax and disappear after processing can be substantially alleviated by controlling dwell time to ensure reliable embossing.
Abstract:
Apparatus for embossing web material such as a heated thermoplastic web material comprises first and second embossing members each having a resilient embossing surface, and means mounting the embossing members for relative movement to define a roll nip between them. The resilient surface of the first embossing member has a primary embossing pattern thereon and is of harder durometer than the resilient surface of the second embossing member. Both resilient surfaces are soft enough to be temporarily deformed in the roll nip to press the web material between them into surface conforming contact with the primary embossing pattern. The temporary deformation also helps to expel air from between the web material and the primary embossing pattern to insure surface conforming contact of the web to the embossing pattern. A secondary embossing pattern is provided on the resilient surface of the second embossing member and is of lesser depth than the primary embossing pattern. The temporary deformation assists in providing full contact with both patterns.A method of embossing the material includes heating the thermoplastic web material to a temperature within its softening range, introducing the heated material to a nip formed between the first and second embossing members, and allowing the embossed material to cool to set the pattern before removing it from the first embossing member.