Abstract:
Provided is a positive-pressure floating type airplane comprising an airfoil portion, left-right fuselages (30A and 30B), a central fuselage (40), an elevator (50) and a rudder disposed at the back of the airfoil portion, a thruster disposed at the back of the central fuselage (40), and a horizontal stabilizer (56) disposed at the rear ends of the left-right fuselages (30A and 30B). The individual front ends of the airfoil portion, the left-right fuselages (30A and 30B) and the central fuselage (40) are formed into arcuate shapes in longitudinal sections. On the lower side of the airfoil portion, a recessed air capture (32) is formed from the front end to the rear end. As a result, the positive-pressure floating type airplane is floated by the reaction from the air at the time when the air to pass the air capture (32) through the airfoil portion is pushed by the thrust of the thruster, and is propelled forward by the component of that thrust.
Abstract:
An aircraft which is configured for vertically ascending and landing, includes at least two wings (2a, 2b, 4a, 51, 4b, 52), a space (2c, 4c) for the generating during operation of climbing power, and an intermediate portion (3), the intermediate portion (3) being provided with thrust motors (6), and the space (2c, 4c) for the generating during operation of climbing power being provided with a quantity of lifting power units (HV). Each lifting power unit includes a first variable volume (V1) for the storage of an amount of relatively light gas which is lighter than atmospheric air, and is configured for the controllable adjustment of an upward force or lifting power by the variable volume taken up by the amount of relatively light gas.
Abstract:
Provided is a positive-pressure floating type airplane (10) comprising an airfoil portion (12), left-right fuselages (30A and 30B), a central fuselage (40), an elevator (50) and a rudder (52) disposed at the back of the airfoil portion (12), a thruster (54) disposed at the back of the central fuselage (40), and a horizontal stabilizer (56) disposed at the rear ends of the left-right fuselages (30A and 30B). The individual front ends of the airfoil portion (12), the left-right fuselages (30A and 30B) and the central fuselage (40) are formed into arcuate shapes in longitudinal sections. On the lower side of the airfoil portion (12), a recessed air capture (32) is formed from the front end to the rear end. As a result, the positive-pressure floating type airplane (10) is floated by the reaction from the air at the time when the air to pass the air capture (32) through the airfoil portion (12) is pushed by the thrust of the thruster (54), and is propelled forward by the component of that thrust.
Abstract:
A system for connecting an all-wing carrier with a parasite flying unit, characterized in that the carrier (1) and the parasite flying unit (2) are connected via energy distribution means (11 a, 21a, 11b, 21b) configured to exchange energy bi-directionally, wherein the system further comprises a controller (41) configured to control the direction of the flow and the amount of said energy.
Abstract:
A wind-based power generating system provides a wind energy converter for converting wind energy into another form of energy using a lighter-than-air craft configured to produce a positive net lift. The net lift includes both a net aerodynamic lift and a net buoyant lift. A tethering mechanism is configured to restrain the lighter-than-air craft with respect to the ground. The lighter-than-air craft defines an interior volume for containing a lighter-than-air gas, and the lighter-than-air craft has a fore section and an aft section. The tethering system has at least one attachment point on the fore section of the lighter-than-air craft and at least one attachment point on the aft section of the lighter-than-air craft. The lighter-than-air craft provides a stable aerodynamic moment with respect to a yaw axis about a center-of-mass of the lighter-than-air craft. The craft can be formed in a variety of aerodynamic profiles/shapes.