Abstract:
A fluid filtration apparatus, which includes a plurality of optical fibers each having a length, wherein one or more of the plurality of optical fibers exhibits frustrated total internal reflection, thereby emitting light along the length of one or more of the optical fibers, in combination with a photocatalyst disposed on the plurality of optical fibers and a light source interconnected to the plurality of optical fibers.
Abstract:
The photoreactor comprises a tube bundle (10) made up of numerous capillary tubes (11) through which a reaction medium flows. The tubes (11) are transparent. Solar radiation or artificial radiation acts upon the reaction medium for effecting a photochemical or photobiological treatment. The inlet chamber (12) connected with the tube bundle (10) comprises a flow distributor (16) which distributes the reaction medium from the fluid inlet (15) to the tubes (11). The flow distributor (16) allows for a smaller volume of the inlet chamber (12). The reactor volume, which is not irradiated, is thus reduced, and the efficiency of the rector is enhanced.
Abstract:
The present invention provides an apparatus for producing photocatalytic reaction water through a photocatalytic reaction, which can produce water containing a satisfactory amount of active oxygen species, can eliminate microorganisms, parasites or protozoa, shows high oxidizing ability for a prolonged period of time, can reduce the power requirements, is small in size, and is applicable to various devices. A photocatalyst is radiated with light emitted from a light source to produce active oxygen species, and the active oxygen species is diffused in water, whereby the water is provided with functions of the active oxygen species. An oxidation reaction with the water is utilized to perform at least one selected from the elimination of microorganisms, the elimination of parasites, and the elimination of protozoa.
Abstract:
In order to disinfect and to detoxify a fluid, a photoreactor contains at least two light sources. One light source activates the catalytic function of a semiconductor material in the fluid to reduce the concentration of contaminants in the fluid, such as by breaking down organic contaminants into non-toxic compounds. A second light source acts directly on living biological entities to sterilize or kill them and thereby disinfect the fluid, and can also serve to activate a semiconductor photocatalyst that in turn causes further damage to biological contaminants. The semiconductor photocatalyst is desirably attached to an optically transmitting fiber substrate in the fluid. The second light source in one embodiment is external to the fluid and illuminates the photocatalyst through transmitting surfaces in a fluid containment vessel. The light sources can comprise respective sets of plural LEDs.
Abstract:
The present invention provides a method and apparatus for sanitizing consumable water using an ultraviolet light. The water is exposed to the ultraviolet light for a preselected duration of time and at a desired power level to achieve a desired level of sanitization.
Abstract:
An inline air handler system and associated method of use is disclosed. This includes a member, at least one sensor operatively attached to the member, at least one ultraviolet light operatively attached to the member, at least one electronic input device, at least one electronic output device, a control unit, which includes a processor, that is electronically in communication with the at least one sensor, the at least one ultraviolet light, the at least one electronic input device and the at least one electronic output device, a water purification mechanism that includes an ultraviolet radiation chamber to allow water to flow between the inlet and the outlet through the ultraviolet radiation chamber and the ultraviolet radiation chamber can be positioned adjacent to at least one ultraviolet light. The air filtration unit and the member are positioned in a chamber located within a heating, ventilation, evaporative cooling and/or air conditioning system.
Abstract:
Photolytic and photo-catalytic reactions have the potential to passivate water- or air-borne bio-hazardous materials. This invention describes a device to be used as a means for disinfecting water contaminated with organic compounds or biological agents such as bacteria, or viruses. The present invention relates to a device utilizing an inert substrate matrix to support a photoactive catalyst and a means for transmitting high energy light, especially ultraviolet light. The matrix presents a large surface area in direct contact with the contaminated water or air. The matrix transmits or is transparent to light emanating from a source such as a UV lamp. The substrate matrix provides a means for light to interact in close proximity with the photoactive catalysts and organic matter in the water or air. The photoactivated catalyst accelerates the decomposition of biological matter in the water or air, effectively disinfecting the water or air as it comes into contact with the photoactivated agent held on the substrate.
Abstract:
A method for disinfecting liquids and gases includes the steps of distributing at least one optical fiber in the region containing the liquids or gases to be disinfected; aligning at least one radiation unit having a high intensity source of light into said fibers; radiating the liquid or gases by the optical fiber over a predetermined period of time. The present invention further related to devices using the same method.
Abstract:
A variety of applications for UV LEDs that are integrated into a system are described, where the UV light is used for disinfection of air or surfaces, or used to detect the scattering light by particles, or used for skin treatment. In one embodiment, a ceiling luminaire includes a sensor for detecting the presence of people in the room. The luminaire contains a first set of LEDs for generating white light, for illumination, and a second set of LEDs for generating UV light for disinfecting the room. When the sensor detects that no people are in the room, the system automatically controls the UV LEDs to turn on to disinfect the room. The white light LEDs may be independently controlled with a dimmer.
Abstract:
A self-cleaning ultraviolet wastewater disinfection unit and method are provided. The disinfection unit has a wastewater treatment chamber comprising a UV lamp for treating/disinfecting the wastewater. A plurality of pieces of media may be positioned in the treatment chamber. When wastewater is present in the chamber, gas is injected into the wastewater through a gas inlet conduit. The gas agitates the pieces of media in the wastewater to cause the pieces of media to rub against the UV lamp unit to remove matter that has accumulated on the UV lamp unit. The removal of accumulated matter on the UV lamp and other surfaces in the chamber may improve the efficiency and effectiveness of the disinfecting unit. Furthermore, the cleaning operation may be performed automatically at scheduled periods to increase the time between major cleanings of the unit.