Abstract:
This invention relates to the discovery of a method for incorporating various oxides into silica-containing porous and nonporous glass materials by dissolving soluble compounds of the additive oxides, characterized as MxOy, into solutions, colloidal solutions, or suspensions of soluble silicates, reacting the mixture with an organic compound, and then firing the thus-formed body at temperatures below the softening point of the particular glass composition for a sufficient length of time to produce the porous body or non-porous glass body containing the added oxides intimately bonded to the silica network.
Abstract:
The present invention is to provide a synthetic quartz glass body having a high light transmittance. The present invention provides a synthetic quartz glass body having pores in a surface part thereof.
Abstract:
The invention provides a process for simply and easily producing high-purity flame-processable synthetic opaque quartz glass including large-sized one; and synthetic opaque quartz glass. The invention relates to a process for the production of synthetic opaque quartz glass which comprises the step of heating and firing a porous quartz glass under a pressure of 0.15 to 1000MPa at a temperature of 1200 to 2000‹C. The porous quartz glass is one prepared by accumulating quartz glass fine particles formed by the hydrolysis of a silicon compound with oxyhydrogen flame. ® KIPO & WIPO 2009
Abstract:
To provide opaque quartz glass having no water absorbing properties and being excellent in infrared light shielding properties, and a method for its production. In the production of opaque quartz glass of the present invention, a fine amorphous silica powder and a pore forming agent are mixed, then molded and heated at a predetermined temperature, to obtain opaque quartz glass wherein contained pores are closed pores, the average pore size of pores is from 5 to 20 μm, and the content density of pores is high, whereby the heat shielding properties are high.
Abstract:
In order to provide a vitreous silica crucible which does not employ a crystallization accelerator but is difficult to deform during its use even under high temperature, and is easily manufactured, there is provided a vitreous silica crucible for pulling single-crystal silicon wherein the outer surface layer is formed of a bubble-containing vitreous silica layer, the inner surface layer is formed of a vitreous silica layer whose bubbles are invisible to the naked eye, a surface of the outer surface layer includes an unmelted or half-melted silica layer (abbreviated as a half-melted silica layer), and the center line average roughness (Ra) of the half-melted silica layer is 50 to 200 μm, also preferably, and the thickness of the half-melted silica layer is 0.5 to 2.0 mm.
Abstract:
The present invention is to provide a synthetic quartz glass body having a high light transmittance. The present invention provides a synthetic quartz glass body having pores in a surface part thereof.
Abstract:
This invention provides a method for manufacturing an optical glass in order to prevent the deterioration of the burner used in the synthesis of glass particles that form the optical glass, and to obtain a stable quality optical glass. In this invention, the number of residual bubbles with a diameter of 0.3 mm and more is 0.005/cm3 or less per unit volume of the optical glass. Such optical glass is obtained by controlling the temperature of an end face of the burner for glass synthesis during the deposition of the glass particles by regulating the relationship of the flow velocity or the flow volume between an inflammable gas and a combustion-supporting gas.
Abstract translation:本发明提供一种制造光学玻璃的方法,以防止在形成光学玻璃的玻璃颗粒的合成中所使用的燃烧器的劣化,并获得稳定质量的光学玻璃。 在本发明中,每单位体积的光学玻璃的直径为0.3mm以上的残留气泡的数量为0.005 / cm 3以下。 这样的光学玻璃是通过调节在可燃性气体和助燃气体之间的流动速度或流量之间的关系来控制玻璃粒子沉积时的玻璃合成用燃烧器的端面的温度而得到的。
Abstract:
In order to provide a quartz glass crucible distinguished by high purity, high opacity and/or low transmissibility in the IR spectrum, it is proposed on the basis of a known quartz glass crucible of opaque quartz glass with a crucible body symmetrical in relation to a rotational axis, an outer zone (3) of opaque quartz glass transitioning radially toward the inside into an inner zone (2) of transparent quartz glass and with a density of at least 2.15 g/cm3, that according to the invention, the crucible body (1) be made of a synthetic SiO2 granulate with a specific BET surface ranging from 0.5 m2/g to 40 m2/g, a tamped volume of at least 0.8 g/cm3 and produced from at least partially porous agglomerates of SiO2 primary particles. A process for producing a quartz glass crucible of this kind is distinguished according to the invention in that for the production of the crucible a SiO2 granulate is used which was formed from at least partially porous agglomerates of synthetically manufactured SiO2 primary particles and that it has a specific BET surface ranging from 0.5 m2/g to 40 m2/g and a tamped volume of at least 0.8 g/cm3, the heating effected in such a way that a vitrification front advances from the inside outward while an inner zone (4) of transparent quartz glass is being formed.
Abstract translation:为了提供在IR光谱中具有高纯度,高不透明性和/或低透射率的石英玻璃坩埚,提出了在已知的不透明石英玻璃的石英玻璃坩埚的基础上,坩埚体相对于 旋转轴线,不透明石英玻璃的外部区域(3),径向朝向内部转变成透明石英玻璃的内部区域(2),密度为至少2.15g / cm 3,根据本发明,坩埚体 (1)由具有0.5m 2 / g至40m 2 / g的比BET表面的合成SiO 2颗粒制成,捣实体积至少为0.8g / cm 3并由SiO 2一次颗粒的至少部分多孔的附聚物制成。 根据本发明,制造这种石英玻璃坩埚的方法的不同之处在于,对于坩埚的制造,使用由至少部分多孔的合成SiO 2原生颗粒的聚集体形成的SiO 2颗粒,并且其具有 比表面积为0.5m2 / g〜40m2 / g,捣实体积为0.8g / cm 3以上,使玻璃化前沿从内侧向前方前进,同时将内部区域(4) 正在形成透明的石英玻璃。
Abstract:
In a known process for the production of opaque quartz glass a blank is formed from synthetic SiO2 granulate and is heated at a vitrification temperature to form a body of opaque quartz glass. In order to provide on this basis a process for the production of pure opaque quartz glass with a homogenous pore distribution, high density, high viscosity and a low tendency to devitrify, it is proposed according to the invention that the SiO2 granulate to be used is a SiO2 granulate (21; 31) composed of at least partially porous agglomerates of SiO2 primary particles, with a specific BET surface ranging from 1.5 m2/g to 40 m2/g and an apparent density of at least 0.8 g/cm3. A SiO2 granulate (21; 31) suitable for the implementation of the process is distinguished in that it is formed from at least partially porous agglomerates of SiO2 primary particles and in that it has a specific BET surface ranging from 1.5 m2/g to 40 m2/g and an apparent density of at least 0.6 g/cm3.