Abstract:
Embodiments of the present disclosure provide for methods of detecting, sensors (e.g., chromogenic sensor), kits, compositions, and the like that related to or use tunable macroporous polymer. In an aspect, tunable macroporous materials as described herein can be used to determine the presence of a certain type(s) and quantity of liquid in a liquid mixture.
Abstract:
Various embodiments disclosed relate to pore inducers and porous abrasive forms made using the same. In various embodiments, the present invention provides a method of forming a porous abrasive form including heating an abrasive composition including pore inducers to form the porous abrasive form. During the heating the pore inducers in the porous abrasive form reduce in volume to form induced pores in the porous abrasive form.
Abstract:
The invention relates to a porous hydrogel matrix having substantially interconnected tunnel-shaped micropores with a three-dimensional configuration of an interconnected hollow tetrapod network. Such matrices may be used to entrap motile cells that migrate into the micropores of said matrix. The matrices of the invention are formed by a method comprising the steps of providing a solution of a hydrogel-forming material, providing a template material with a three-dimensional configuration corresponding to the negative configuration of the desired interconnected porous structure of the hydrogel material, said template material comprising interconnected zinc oxide tetrapod (t-ZnO) networks, casting the solution of hydrogel-forming material onto the template and removing the template material from the hydrogel material by acid hydrolysis of the template material.
Abstract:
A porous polyimide resin film having a high aperture ratio, and a method for producing a porous polyimide film. The method includes removing fine particles from a polyimide resin-fine particle composite film to obtain a porous polyimide resin film by either removing at least a part of a polyimide resin portion of the polyimide resin-fine particle composite film prior to removing the fine particles, or by removing at least a part of the porous polyimide resin film subsequent to removing the fine particles.
Abstract:
In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to macroporous photonic crystal membranes, structures including macroporous photonic crystal membranes, devices including macroporous photonic crystal membranes, methods of using macroporous photonic crystal membranes, methods of making macroporous photonic crystal membranes, and the like.
Abstract:
Macroporous matrices containing molecularly imprinted photonic polymers (MIPPs) and methods of making these macroporous matrices are disclosed herein. The macroporous matrices can, for example, be used for detection of small molecules, such as metal ions, in a sample.
Abstract:
The present invention provides a method for producing a three-dimensional product having a nanoporous surface in which the pore density, pore size or pore size distribution can be easily and readily controlled. The invention combines two techniques: a method for producing a three-dimensional product in which a yarn is knitted or woven to finish into an arbitrary three-dimensional shape, and a method for transforming a surface consisting of a material in which nanoparticles are dispersed in a matrix to a nanoporous surface by immersing the surface in a liquid which dissolves the nanoparticles but does not dissolve the matrix.
Abstract:
The invention relates to a process for the formation of pores of controlled shape, dimensions and distribution in a polymer matrix comprising a step of embedding silicon nanowires and/or nanotrees in a nonpolymerized polymer matrix or a nonpolymerized polymer matrix in suspension or in solution in at least one solvent, a step of curing the polymer matrix, and a step of removing the silicon nanowires and/or nanotrees by chemical treatment. The process of the invention can be used for the manufacture of a proton exchange membrane fuel cell active layer. The invention has applications in the field of manufacture of proton exchange membrane fuel cells, in particular.
Abstract:
Porous, rigid resin particles are prepared having a predetermined particle size distribution, surface area and porosity by polymerizing in the pores of porous inorganic template particles a reaction mixture comprising monovinyl monomers, polyvinyl crosslinking monomers and a polymerization initiator in a liquid medium in which the monomers and initiator are phase separable and extractable therefrom into the pores of the template particles. The extracted mixture is polymerized in the pores of the template particles, and the template particles are removed without destruction of the polymerizate. The isolated polymerizate mirrors the characteristics of the template particles. The surface of the polymerizate may be modified in various ways to contain desired functionality. The particles of the invention are useful in chromatography, adsorption, ion exchange, and in catalysis.
Abstract:
To provide a porous polyimide resin film having a high aperture ratio. A method for producing a porous polyimide film comprising removing fine particles from a polyimide resin-fine particle composite film to thereby obtain a porous polyimide resin film, in which the method comprises either removing at least a part of a polyimide resin portion of the polyimide resin-fine particle composite film prior to removing the fine particles, or removing at least a part of the porous polyimide resin film subsequent to removing the fine particles.