Abstract:
Modified porous materials are disclosed having interconnected, complexly shaped three-dimensional surfaces. The modification is accomplished by crosslinking the three-dimensional surfaces and/or by coating the three-dimensional surfaces with a layer of a predetermined material. The porous materials are macro structures including at least one of nano-features, micro-features, and combinations thereof. The modifying accomplishes changing surface properties of the porous materials, changing the threedimensional surfaces, and/or rendering the porous materials substantially stable in a predetermined environment.
Abstract:
Polymeric particles are provided that have pores (i.e., free volume or voids). The polymeric particles can be used to store or deliver active agents that are adsorbed in the pores of the polymeric particles. In many embodiments, the active agents are hydrophobic. Reaction mixtures and methods of forming the polymeric particles from the reaction mixtures are also provided.
Abstract:
Porous polymeric resins, reaction mixtures and methods that can be used to prepare the porous polymeric resins, and uses of the porous polymeric resin are described. More specifically, the polymeric resins typically have a hierarchical porous structure plus reactive groups that can be used to interact with or react with a variety of different target compounds. The reactive groups can be selected from an acidic group or a salt thereof, an amino group or salt thereof, a hydroxyl group, an azlactone group, a glycidyl group, or a combination thereof.
Abstract:
Porous polymeric resins, reaction mixtures and methods that can be used to prepare the porous polymeric resins, and uses of the porous polymeric resin are described. More specifically, the polymeric resins typically have a hierarchical porous structure plus reactive groups that can be used to interact with or react with a variety of different target compounds. The reactive groups can be selected from an acidic group or a salt thereof, an amino group or salt thereof, a hydroxyl group, an azlactone group, a glycidyl group, or a combination thereof.
Abstract:
A process for producing a microporous polymeric object to improve the degree of freedom for its various properties, compared to conventional processes, includes: mixing a block copolymer made of three or more kinds of segments with a polymer, wherein one or more of the segments are made of monomer units having a first functional group forming ionic and/or hydrogen bond, the segments constitute a co-continuous structure having mutually-independent and continuous regions due to a phase separation based on incompatibility between the segments, and the polymer has, at other than polymer chain terminals, a second functional group forming such bond with the first functional group, thereby allowing the segments to associate with the polymer at many points; forming a co-continuous structure including a region composed of the polymer and the segments due to the phase separation; and removing the polymer from the region by weakening the bond between the functional groups.
Abstract:
Microporous material comprising a polypropylene polymer having at least 20 percent crystallinity; and a compatible, amorphous, glassy polymer, wherein said polymers are miscible in a compound when heated above the melting temperature of the polypropylene polymer and wherein a polypropylene polymer phase separates from the compound when cooled below the crystallization temperature of the polypropylene polymer. Microporous material is made by a thermally induced phase separation process using a compound such as mineral oil to form one phase containing both polymers. The pores of the microporous material resist collapse during processing. Membranes made of this material are useful as battery separators having a good combination of strength, porosity, and ionic resistance when imbibed with an electrolyte.
Abstract:
There is provided a method for preparing a porous gel. The method comprises using a porous polymer template. The porous gel according to the invention has a porosity that is continuous throughout the whole volume of the gel and that is tunable in terms of pore size distribution and average pore diameter. The porous gel can be used in various applications.
Abstract:
The invention relates to a solid material containing an active load and enabling easy access to said load. The material comprises a matrix made of a microporous workable material with open pores, and a particular active load having at least a portion thereof contained in a free state in at least a portion of the pores of said matrix. The invention also relates to a method for making such a material.
Abstract:
The present invention relates to a process for the manufacture of a porous polymer, wherein a composition comprising a polymerizable component, a porogen having an inverse temperature dependent solubility and a solvent are polymerized at a temperature around the cloud point temperature of the composition. The porous polymers obtainable according to the process of the invention are useful, for example, as materials for the manufacture of biomedical devices and prostheses, including ophthalmic devices such as contact lenses or artificial corneas.