Abstract:
폴리우레탄과 같은 통상 소수성 발포체 및 중합된 유중수적형 발포체를 간단한 계면활성제 및 친수성화제 염으로 처리함으로써 친수성을 띠게 만들 수 있다. 그러므로, 계면활성제 함유 발포체를 염화칼슘 등의 용액으로 처리하고, 건조시켜, 계면활성제 함유 내부 발포체 표면상에 수화되거나 수화가능한 염화칼슘의 거의 균일하게 분포된 잔기를 남게 한다. 기타 수화가능한 칼슘 또는 마그네슘염, 예를들면 염화 마그네슘도 사용할 수 있다. 수득된 친수성화된 발포체는 기저귀, 생리대, 붕대 등을 비롯한 흡수제품에 사용하기에 적합하다.
Abstract:
The invention relates to a method for producing an aerogel material with a porosity of at least 0.55 and an average pore size of 10 nm to 500 nm, having the following steps: a) preparing and optionally activating a sol; b) filling the sol into a casting mold (10); c) gelling the sol, whereby a gel is produced, and subsequently aging the gel; at least one of the following steps d) and e), d) substituting the pore liquid with a solvent; e) chemically modifying the aged and optionally solvent-substituted gel (6) using a reaction agent; followed by f) drying the gel, whereby the aerogel material is formed. The casting mold used in step b) is provided with a plurality of channel-forming elements (2) which are designed such that the sol filled into the casting mold lies overall at a maximum distance X from a channel-forming element over a specified minimum length L defined in the channel direction of the elements, with the proviso that X 3.
Abstract:
Provided herein is a superabsorbent polyHIPE composition-of-matter comprising a majority of ionizable pendant groups, capable of absorbing up to 300-fold by mass water while exhibiting a notable mechanical strength in both the dry and wet form, as well as various uses thereof.
Abstract:
An amino-containing silica particle is provided. The amino-containing silica particle is obtained by hydrolysis-condensation reaction of an alkoxy silane represented by formula (I), an alkoxy silane represented by formula (II) and a catalyst: Si(OR1)4 formula (I) (NH2—Y)m—Si(OR2)4-m formula (II) wherein in formula (I), R1 is a C1-C10 alkyl group, and in formula (II), Y is a C1-C10 alkyl group or a C2-C10 alkenyl group, R2 is a C1-C10 alkyl group, and m is an integer of 1 to 3.
Abstract:
The present invention relates to a process for preparing a porous material, at least comprising the steps of providing a mixture (I) comprising a water soluble polysaccharide, at least one compound suitable to react as cross-linker for the polysaccharide or to release a cross-linker for the polysaccharide, and water, and preparing a gel (A) comprising exposing mixture (I) to carbon dioxide at a pressure in the range of from 20 to 100 bar for a time sufficient to form a gel (A), and depressurizing the gel (A). Gel (A) subsequently is exposed to a water miscible solvent (L) to obtain a gel (B), which is dried. The invention further relates to the porous materials which can be obtained in this way and the use of the porous materials as thermal insulation material, for cosmetic applications, for biomedical applications or for pharmaceutical applications.
Abstract:
A composition comprising a gelling agent is provided. The gelling agent consists essentially of a cellulose ether based gelling polymer and the composition is a rigid foam at 20 degrees Celsius. The composition may also comprise an active ingredient. Also provided is a process of making the composition comprising drying a foamed liquid composition comprising the gelling agent at low temperatures. The foamed liquid composition may also comprise an active ingredient.
Abstract:
Porous organic polymeric films having multiple discrete cavities can be prepared by applying a water-in-oil emulsion that includes a cavity stabilizing hydrocolloid on the inner walls of the multiple discrete cavities to a substrate. The multiple discrete cavities can also include organic catalytic materials for various catalytic reactions, markers materials for security applications, or the multiple discrete cavities can be used to increase opacity, hydrophobicity, or other desirable properties compared to nonporous organic polymeric films composed of the composition and dry thickness. Water and oil from the applied water-in-oil emulsion can be removed by evaporation in a suitable process, and the applied porous organic polymeric film can be provided as a uniform material or in a patternwise fashion.
Abstract:
Porous organic polymeric films having multiple discrete cavities can be prepared by applying a water-in-oil emulsion that includes a cavity stabilizing hydrocolloid on the inner walls of the multiple discrete cavities to a substrate. The multiple discrete cavities can also include organic catalytic materials for various catalytic reactions, markers materials for security applications, or the multiple discrete cavities can be used to increase opacity, hydrophobicity, or other desirable properties compared to nonporous organic polymeric films composed of the composition and dry thickness. Water and oil from the applied water-in-oil emulsion can be removed by evaporation in a suitable process, and the applied porous organic polymeric film can be provided as a uniform material or in a patternwise fashion.
Abstract:
Provided are porogen compositions and methods of using such porogen compositions in the manufacture of porous materials, for example, porous silicone elastomers. The porogens generally include comprising a core material and shell material different from the core material. The porogens can be used to form a scaffold for making a resulting porous elastomer when the scaffold is removed.
Abstract:
Porous particles can be prepared using an evaporative limited coalescence process in which one or more discrete cavities are stabilized within the continuous polymeric solid phase of the porous particles. The one or more discrete cavities have inner walls and are dispersed within the continuous polymeric solid phase. The porous particles further comprise a cavity stabilizing hydrocolloid on the inner walls of the one or more discrete cavities, and an amphiphilic (low HLB) block copolymer that is disposed at the interface of the discrete cavities and the continuous polymeric solid phase.