Abstract:
The present disclosure provides organic fine particles and a slip-resistance agent composition which are capable of providing excellent slip-resistance to a base material. Said organic fine particles contain a polymer having a repeating unit formed of: (I) a hydrophobic monomer that has a single ethylenically unsaturated double bond and at least one branched or cyclic hydrocarbon group having 3-40 carbon atoms; and, if necessary, (II) a cross-linking monomer having at least two ethylenically unsaturated double bonds. Said slip-resistance agent composition contains (A) the organic fine particles and (B) an aqueous medium.
Abstract:
Described are polymerizable high energy light absorbing compounds of formula I:
Wherein Y, Pg, R2, R3, R4, R5, and R6 are as described herein. The compounds absorb various wavelengths of ultraviolet and/or high energy visible light and are suitable for incorporation in various products, such as biomedical devices and ophthalmic devices.
Abstract:
Disclosed are asphalt and asphalt binders and methods for making such compositions with sterols. The sterols improve various rheological properties. Also disclosed are methods of determining the changes or improvements of various rheoloical properties.
Abstract:
A method of decreasing aldehyde content in polymeric materials, for example in bottles comprising polyethylene terephthalate, uses a compound (A) which comprises first, second and third fragments which comprise a moiety Formula A) (A) and a moiety. (Formula B) NH (B).
Abstract:
This invention relates to a reactive silicone composition for forming a hotmelt material, comprising: (A) an organopolysiloxane resin represented by the specific average unit formula; (B) an organopolysiloxane resin free of alkenyl group and represented by the specific average unit formula; (C) a diorganopolysiloxane represented by the specific average formula; (D) an organohydrogenpolysiloxane having two silicon-bonded hydrogen atoms in a molecule; (E) an organohydrogenpolysiloxane having at least three silicon-bonded hydrogen atoms in a molecule; and (F) a hydrosilylation catalyst. The reactive silicone composition can be reacted to form a hotmelt material having excellent shelf life stability, instant adhesion performance by hotmelt process.
Abstract:
The present disclosure relates to a matrix-free polymer nanocomposite. The matrix-free polymer nanocomposite includes a plurality of polymer brush grafted nanoparticles, which form the nanocomposite in the absence of a polymeric matrix. The polymer brush grafted to the nanoparticles comprises a multimodal brush configuration having at least two different populations of polymer ligands of different lengths. The present disclosure also relates to an optic or optoelectronic component comprising a matrix-free polymer nanocomposite as described herein. The present disclosure further relates to a method of making a matrix-free polymer nanocomposite.
Abstract:
A silicone resin liquid composition containing a silicone resin is provided. The 29Si-NMR measurement of the resin exhibits a ratio of the area of signals assigned to A3 silicon atoms to the area of all signals derived from silicon atoms of 51% to 69%. An A3 silicon atom represents a silicon atom to which are bonded three oxygen atoms bonded to another silicon atom.
Abstract:
We disclose a method of making an asphalt composition containing large quantities of ground tire rubber. Over 20% GTR by weight can be used in the asphalt composition without the GTR settling out. The method comprises a series of heating and blending and using a GTR stabilizer.
Abstract:
A sensing material for use in a sensor is disclosed. Such a sensing material includes a polymer base and a piezoresistive nanocomposite embedded into the polymer base in a continuous pattern. The nanocomposite comprises a polymer matrix and a plurality of conductive nanofillers suspended in the matrix. The conductive nanofillers may be one or a combination of nanotubes, nanowires, particles and flakes. The density of the plurality of nanofillers is such that the nanocomposite exhibits conductivity suitable for electronic and sensor applications.
Abstract:
The invention disclosed herein relates to a rigid foam composite comprising a polyurethane and a phase change material (PCM), wherein the PCM is present in the composite at a concentration of greater than 25 weight % relative to the weight of the composite, and methods for its preparation and uses thereof.