Abstract:
A cable comprises at least one layer of strands (10) with each strand covered with an individual sheath (20) of rubber or plastics material. The sheaths are so shaped (16, 17, 18) that the sheaths of adjacent strands interlock. This provides a layer in which the strands have a generally fixed spatial relationship both to each other and within the cable. This reduces inter-strand forces, so increasing cable life, and also provides a dimensionally stable cable.
Abstract:
A method of constructing a wire rope from plural outer strands and a core, the core having one or more core strands, each of the one or more core strands having plural core wires, the method comprising: swaging the core to laterally compress the core to an extent sufficient to cause concave deformation of at least some of the plural core wires; and closing the plural outer strands over the core to produce the wire rope.
Abstract:
Method for manufacturing a metal cord with three concentric layers including a first layer of diameter dc made up of M wire(s) of diameter d1, around which layer are wound together as a helix at a pitch p2, as a second layer, N wires of diameter d2, around which are wound as a helix at pitch p3, as a third layer, P wires of diameter d3. The N wires of the second layer are assembled around the layer to form, at a point called “assembling point”, an intermediate cord called “core strand” of M+N construction; upstream and/or downstream of the assembling point, the layer and/or the core strand is sheathed with a rubber or rubber composition by passing through at least one extrusion head; then the P wires of the third layer are assembled around the core strand to form a cord of M+N+P construction thus rubberized from the inside.
Abstract:
With a wire rope comprising at least one plastic core (11) and a number of wire strands (15) twisted around the latter a helical groove (20) is respectively produced by machining around the periphery of the plastic core (11) for each wire strand (15). The cross section of these helical grooves (20) is respectively matched to the outside diameter of the wire strands (15). The plastic core (11) is provided with the helical grooves (20) for receiving the wire strands (15) by this machining directly before the wire strands (15) are wound onto said core. By thus forming the wire rope by means of this machining in order to produce helical grooves of the plastic core, optimal guiding of the wire strands in the twisted state is achieved, and so overall there are improvements to the properties of the wire rope.
Abstract:
Method for manufacturing a metal cord with three concentric layers including a first layer of diameter dc made up of M wire(s) of diameter d1, around which layer are wound together as a helix at a pitch p2, as a second layer, N wires of diameter d2, around which are wound as a helix at pitch p3, as a third layer, P wires of diameter d3. The N wires of the second layer are assembled around the layer to form, at a point called “assembling point”, an intermediate cord called “core strand” of M+N construction; upstream and/or downstream of the assembling point, the layer and/or the core strand is sheathed with a rubber or rubber composition by passing through at least one extrusion head; then the P wires of the third layer are assembled around the core strand to form a cord of M+N+P construction thus rubberized from the inside.
Abstract:
The invention relates to a hybrid rope having a core containing high modulus polyethylene (HMPE) yarns surrounded by an outer layer containing steel wire strands, wherein the core is coated with a plastomer, the plastomer being a semi-crystalline copolymer of ethylene or propylene and one or more C2 to C12 α-olefin co-monomers and the plastomer having a density as measured according to ISO1183 of between 870 and 930 kg/m3.
Abstract translation:本发明涉及一种混合绳索,其具有包含由包含钢丝股线的外层包围的高模量聚乙烯(HMPE)纱线的芯,其中所述芯部由塑性体涂覆,所述塑性体是乙烯或丙烯的半结晶共聚物和 一种或多种C 2 -C 12α-烯烃共聚单体和根据ISO1183测得的密度在870和930kg / m 3之间的塑性体。
Abstract:
A light weight cable bead core 30 is described having an inner core 33 made of a metal wire 34 with an outer sheath 35 of steel cord wires 36. Each cord 36 is made of a plurality of filaments 37. The bead core 30 is particularly suited for heavy-duty service conditions in tires 100 for aircraft, off-road equipment, and commercial trucks.