Abstract:
A carburetor with a main fuel jet and a throttle valve in a mixing passage and an apparatus for automatically supplying an enriched fuel and air mixture when an engine is cranked for starting and initial running of the engine upon starting. The apparatus has a mixing chamber with an air intake passage communicating with the mixing passage upstream of the throttle valve, a fuel inlet passage, and an outlet passage for the fuel and air mixture which communicates with the mixing passage downstream of the throttle valve. A valve for controlling the flow of the enriching fuel and air mixture through the outlet passage is manually movable to its opened position where it is releasably retained by an actuator mechanism operably associated with the throttle shaft for releasing and closing the valve when after the engine starts the throttle valve is initially moved from its idle position toward a full open position of the throttle valve.
Abstract:
A rotor assembly is driven by an airstream which by a centrifugal pump forces a measured quantity of fuel through a fixed orifice in direct, and substantially linear proportion to the speed of rotation of the rotor and thus to the volume of the driving airstream. The ultimate fuel-air ratio (λ values) is corrected for optimum operation by slightly changing, in response to measure parameters, one of the constituents of the mixture. In one embodiment, the fuel discharge bore (9) of a rotor (7) is so dimensioned that the rotor-type carburetor (2) produces a lean mixture with a λ-value which is constant for all operating points of the internal combustion engine at a value of approximately 1.25. With the fuel-air ratio correction apparatus additional amounts of fuel are brought into the atomization ring (11) of the rotor (7), with which additional amounts the fuel-air ratio in the lean mixture is changed and at the operating points of the Internal combustion engine the λ-values are adjusted to those most favorable with regard to fuel consumption, output and pollutant-free exhaust gases. The fuel-air ratio correction apparatus includes a regulated fuel injection pump (20) with an injection nozzle (39a) directed at the internal wall (13) of the atomization ring (11) from which pump at each pump stroke approximately 50 mm 3 of fuel are delivered, and a regulating device (50) with a pulse generator (40) for driving the fuel injection pump (20) with current pulses of regulated pulse repetition frequency. The regulation of the pulse repetition frequency takes place by means of control signal generators (51, 52, 53, 54, 55) in dependence on operating parameters of the internal combustion engine such as in particular the opening of the throttle valve (18) for the correction of acceleration, the coolant temperature for the cold start fuel-air ratio correction and so on. This simple and reliable fuel-air ratio correction apparatus assures a very accurate fuel dosing. In other embodiments, the volume of air is reduced to enrich the fuel-air ratio, and in another, the velocity of the same volume of air is increased to enrich the fuel-air ratio.
Abstract:
An injection molded plastic turbine rotor (16a) for a rotor-type carburetor is assembled by simply pressing together upper and lower generally cylindrical sections (50a, 52a). When joined in this manner the two sections (50a, 52a) form in the assembled rotor (16a) an internal circumferential seal (92a) between the two sections (50a, 52a), and an internal passageway system (120a, 122a', 124', 126a) which defines a centrifugal pump mechanism within the turbine rotor (16a). In an alternate embodiment, the rotor includes a third plastic section (160) which is captively retained within the rotor (16a), between the upper and lower sections (50a, 52a) thereof, and is adapted to lockingly receive an end portion of a fuel supply tube (32a) inserted downwardly through a central opening (58a) formed through the upper section (50a).
Abstract:
A rotor assembly is driven by an airstream which by a centrifugal pump forces a measured quantity of fuel through a fixed orifice in direct, and substantially linear proportion to the speed of rotation of the rotor and thus to the volume of the driving airstream. The ultimate fuel-air ratio (λ values) is corrected for optimum operation by slightly changing, in response to measure parameters, one of the constituents of the mixture. In one embodiment, the fuel discharge bore (9) of a rotor (7) is so dimensioned that the rotor-type carburetor (2) produces a lean mixture with a λ-value which is constant for all operating points of the internal combustion engine at a value of approximately 1.25. With the fuel-air ratio correction apparatus additional amounts of fuel are brought into the atomization ring (11) of the rotor (7), with which additional amounts the fuel-air ratio in the lean mixture is changed and at the operating points of the Internal combustion engine the λ-values are adjusted to those most favorable with regard to fuel consumption, output and pollutant-free exhaust gases. The fuel-air ratio correction apparatus includes a regulated fuel injection pump (20) with an injection nozzle (39a) directed at the internal wall (13) of the atomization ring (11) from which pump at each pump stroke approximately 50 mm 3 of fuel are delivered, and a regulating device (50) with a pulse generator (40) for driving the fuel injection pump (20) with current pulses of regulated pulse repetition frequency. The regulation of the pulse repetition frequency takes place by means of control signal generators (51, 52, 53, 54, 55) in dependence on operating parameters of the internal combustion engine such as in particular the opening of the throttle valve (18) for the correction of acceleration, the coolant temperature for the cold start fuel-air ratio correction and so on. This simple and reliable fuel-air ratio correction apparatus assures a very accurate fuel dosing. In other embodiments, the volume of air is reduced to enrich the fuel-air ratio, and in another, the velocity of the same volume of air is increased to enrich the fuel-air ratio.
Abstract:
An acceleration device of a carburetor for a two cycle engine with a rotary dual valve which controls air flow through both a scavenging passage and a separate air intake passage each extending through a carburetor body. The carburetor body houses a metering fuel chamber and an air reference chamber defined by a diaphragm between them. Fuel in the metering fuel chamber is discharged through a port into the air intake passage. An acceleration pump has an actuation chamber which communicates with the scavenging passage and a pump chamber which communicates with the air reference chamber and a membrane between them. During engine acceleration the membrane is displaced by a pressure introduced into the actuation chamber to forcibly send air into the air reference chamber from the pump chamber to move, the diaphragm into the metering fuel chamber, and thereby increase the fuel delivered to the air intake passage.
Abstract:
A carburettor (1) for a controlled-ignition engine (1a) having a float chamber (3) for containing fuel (2) arriving through an inlet duct (5) of the carburettor (1) and for supplying fuel (2) to an outlet (6) of the carburettor (1); the inlet duct (5) being engageable by a needle (20) movable with a body (18) floating in the fuel (2) contained in the chamber (3), and the outlet duct (6) being engageable by a needle (24) controllable by a first cam-and-rocker device (13); a second cam-and-rocker device (14) being movable in phase with the said first device (13) for moving a second body (45) inside the chamber (3) so as cause particular variations in the level of the fuel (2), and to operate a pumping assembly (16) arranged in the chamber (3) itself and operable to supply fuel (2) to the outlet (6) of the carburettor (1).
Abstract:
A carburettor (1) for a controlled-ignition engine (1a) having a float chamber (3) for containing fuel (2) arriving through an inlet duct (5) of the carburettor (1) and for supplying fuel (2) to an outlet (6) of the carburettor (1); the inlet duct (5) being engageable by a needle (20) movable with a body (18) floating in the fuel (2) contained in the chamber (3), and the outlet duct (6) being engageable by a needle (24) controllable by a first cam-and-rocker device (13); a second cam-and-rocker device (14) being movable in phase with the said first device (13) for moving a second body (45) inside the chamber (3) so as cause particular variations in the level of the fuel (2), and to operate a pumping assembly (16) arranged in the chamber (3) itself and operable to supply fuel (2) to the outlet (6) of the carburettor (1).
Abstract:
Die Erfindung schlägt eine Vorrichtung vor, mit der auf bauliche einfache Art eine Korrektur der Gemischzusammensetzung bei einer Änderung des Belastungszustandes eines Verbrennungsmotors, dem eine Gemischbildungsvorrichtung (4, 6, 8, 9, 11) zugeordnet ist, möglich ist. Die Vorrichtung zeichnet sich dadurch aus, daß die Gemischbildungsvorrichtung eine Zumeßeinheit (6) für den Kraftstoff mit einer zuflußseitigen Kraftstofförderleitung (5) und einer abflußseitigen Kraftstofförderleitung (7) aufweist, und in der Zumeßeinheit (6) ein beweglich gelagertes Zumeßorgan (18) angeordnet ist, das positionsabhängig variable Kraftstoffdurchtrittsquerschnitte in der Zumeßeinheit freigibt, wobei die Zumeßeinheit über eine mittels eines beweglichen Ausgleichselementes (33) dichtend verschlossene Öffnung (31) mit einem Ausgleichsraum (32) verbunden ist, der über eine Zweigleitung (34) mit der abflußseitigen Kraftstofförderleitung verbunden ist, sowie das Zumeßorgan und das Ausgleichselement bewegungsschlüssig miteinander gekoppelt sind, derart, daß eine Bewegung des Zumeßorganes in Richtung eines vergrößerten Kraftstoffdurchtrittsquerschnittes zu einer den Ausgleichsraum verkleinernden Bewegung des Ausgleichselementes und eine Bewegung des Zumeßorgans in Richtung eines verkleinerten Kraftstoffdurchtrittsquerschnittes zu einer den Ausgleichsraum vergrößernden Bewegung des Ausgleichselementes führt.
Abstract:
Die Kraftstoff-Austrittsbohrung (9) des Rotors (7) ist so dimensioniert, dass der Rotorvergaser (2) ein Magergemisch mit einem in allen Betriebspunkten der Brennkraftmaschine konstanten Lambda-Wert von ca. 1,25 erzeugt. Mit der Lambda-Korrekturvorrichtung werden zusätzliche Mengen Kraftstoff in den Zerstäubungsring (11) des Rotors (7) eingebracht, mit denen das Kraftstoff-Luftverhältnis des Magergemisches verändert und in den Betriebspunkten der Brennkraftmaschine auf die hinsichtlich Kraftstoffverbrauch, Leistung und schadstoffreie Abgase günstigsten Lambda-Werte eingestellt wird. Die Lambda-Korrekturvorrichtung umfasst eine geregelte Kraftstoff-Einspritzpumpe (20) mit einer auf die Innenwand (13) des Zerstäubungsringes (11) gerichteten Einspritzdüse (39a), aus der bei jedem Pumpenhub ca. 50 mm³ Kraftstoff ausgestossen werden, und eine Regeleinrichtung (50) mit einem Impulsgeber (40) zum Antreiben der Kraftstoff-Einspritzpumpe (20) mit Stromimpulsen geregelter Impulsfolgefrequenz. Die Regelung der Impulsfolgefrequenz erfolgt mit Steuersignalgebern (51, 52, 53, 54, 55) in Abhängigkeit von Betriebsparametern der Brennkraftmaschine, wie insbesondere dem Oeffnen der Drosselklappe (18) für die Lambda-Korrektur beim Beschleunigen, der Kühlmitteltemperatur für die Kaltstart-Lambda-Korrektur usw.