Abstract:
The present invention provides a pipe union that uses mechanical advantage from leverage between a locknut with circumferential torque openings coupled to a tubular first portion and a torque ring with torque slots coupled to a tubular second portion to tighten the union. The tightening can occur without the need of a hammer impact on lugs. Initial tightening can at least partially align longitudinally the radial holes with the radial slots. Final tightening can occur by rotating the torque openings relative to the torque slots using mechanical advantage. Optionally, the pipe union can provide for a ratcheting mechanism to turn the locknut on the tubular first portion to engage the tubular second portion and exert a preliminary torque on the union. The pipe union design also provides a self-energizing elastomeric seal or metal seal. Angles on load shoulders can assist in creating preloads on the union to seal the components.
Abstract:
Apparatus and method for mechanically attached connections of conduits may include a conduit gripping member, a drive member, and a seal member, the drive member causing axial movement of the conduit gripping member to indent into an outer surface of the conduit when the assembly is pulled-up, the drive member causing the seal member to form a zero clearance seal at a location that is axially spaced from the conduit gripping member. The zero clearance seal may comprise a face seal arrangement including a gasket, and the conduit gripping member may be a ferrule, ring or other device that can grip and optionally seal against the conduit outer surface. The assembly may include a sensing function for detecting or sensing a characteristic or condition of an assembly component or the fluid or both. In one embodiment, a body coupling member has a two piece construction of a main body and a conduit socket insert. A flared fitting embodiment is also provided. Sensing functions are also incorporated into fittings other than just zero clearance fittings.
Abstract:
A urea feed or return line (2) that comprises a hollow coupling (1) enabling it to be connected to a urea tank and that comprises a passage for the urea, this coupling being, in addition, equipped with a heating filament (9), at least one part of which extends freely inside the passage provided for the urea, this part having the shape of a loop or a spiral capable of also extending at least partly into the tank and/or into a tube attached thereto.
Abstract:
A method and apparatus for providing an expandable threaded connection between segments of expandable tubulars. Threaded connections are machined into pre-expanded ends of tubulars. Once the threaded connections are machined into the pre-expanded ends, two joints of tubulars are connected using the threads, thus creating a pre-expanded threaded connection. After a tubular string is made up and lowered into a wellbore, the entire length of the string is expanded using known methods for expanding tubulars. During the downhole expansion operation, the pre-expanded threaded connections experience minimal expansion. The minimal downhole expansion of the pre-expanded threaded connections allows the threaded connections to maintain their sealing ability and coupling strength.
Abstract:
The present invention provides a pressurized fluid delivery apparatus, such as a pressure washer or sprayer, including a pump for providing a pressurized fluid, a conduit fluidly connected with the pump to receive the pressurized fluid, a fluid accessory fluidly connected with the conduit to receive the pressurized fluid from the conduit, and a quick-disconnect assembly selectively fluidly connecting the fluid accessory and the conduit. The quick-disconnect assembly includes a male fitting coupled to one of the fluid accessory and the conduit. The male fitting includes a male component and a non-circular outer surface. The quick-disconnect assembly also includes a female fitting coupled to the other of the fluid accessory and the conduit. The female fitting includes a female component having an opening for receiving the male component and a non-circular inner surface coupled to the non-circular outer surface to prevent rotation between the male fitting and the female fitting.
Abstract:
A tube fitting capable of absorbing vibration and shock resulting from a high pressure fluid passing through the tube fitting while it is used includes a connection head, a connection nipple, and an intermediate connection member. The connection head and the connection nipple are provided with an annular collar projecting from an end surface of the connection head and the connection nipple. The connection head, the connection nipple and the intermediate connection member are joined by inserting the annular collars into both ends of the intermediate connection member.
Abstract:
A mounting stop at axially displaceable male-female couplings to prevent involuntary release of the coupling, whereby it comprises a recess (2) arranged to be placed in a first position around a shaft (32) and to be displaceable radially sidewise above said shaft (32) to a second position, and that it comprises at least one stop lug (6, 7; 9; 10) arranged, in said first position to be applied into a groove (34) and thereby to prevent an axial displacement of said male-female coupling parts towards each other, as well as a male part (32) present in such a coupling.
Abstract:
A retention device is provided for positioning and retaining an open generally cylindrical hose clamp on a selected hose. The device extends generally about a longitudinal axis and has a retainer and a locator spaced axially from the retainer in side-by-side relationship. The locator and retainer are coupled together and the locator is adapted to hold the clamp while the retainer is adapted to engage the hose to maintain the device in position on the hose. The retainer is in the form of pair of looped hose engaging elements terminating at respective free ends and cantilevered to extend in opposite directions from a connecting web coupling the locator to the retainer.
Abstract:
A device for coupling pipelines for running cryogenic liquid has: a pair of flanges which are pierced by coupling units respectively and which support the coupling units with the coupling units freely approaching and separating from each other and which form compartments around the coupling units; a pair of inner cover units which open and shut the insides of the coupling units; a pair of outer cover units which open and shut the insides of the compartments of the flanges; and purge lines for purging the insides of the compartments. The process of coupling pipelines by this device has the steps of: opening the outer cover units with the insides of the coupling units shut by the inner cover units; coupling the flanges to each other; purging the inside of a compartment which is formed in the flanges; opening the inner cover units; and coupling the coupling units to each other with the coupling units isolated from the outside air. It can be possible to promptly perform the separation and the coupling of the pipelines with high purity kept. Moreover, the reduction of the cost of the separation and the coupling can be accomplished because the quantity of flushing fluid can be reduced greatly.
Abstract:
A device for coupling pipelines for running cryogenic liquid has: a pair of flanges which are pierced by coupling units respectively and which support the coupling units with the coupling units freely approaching and separating from each other and which form compartments around the coupling units; a pair of inner cover units which open and shut the insides of the coupling units; a pair of outer cover units which open and shut the insides of the compartments of the flanges; and purge lines for purging the insides of the compartments. The process of coupling pipelines by this device has the steps of: opening the outer cover units with the insides of the coupling units shut by the inner cover units; coupling the flanges to each other; purging the inside of a compartment which is formed in the flanges; opening the inner cover units; and coupling the coupling units to each other with the coupling units isolated from the outside air. It can be possible to promptly perform the separation and the coupling of the pipelines with high purity kept. Moreover, the reduction of the cost of the separation and the coupling can be accomplished because the quantity of flushing fluid can be reduced greatly.