Abstract:
A pressure tank includes a metallic vessel, a plastic liner received in the metallic vessel, a flexible diaphragm, two connectors and a nozzle coupled to the nipples respectively. The metallic vessel includes upper and lower shells. The upper shell defines a first planar area on a side thereof and a second planar area on a top thereof. The lower shell defines a third planar area therebottom. The flexible diaphragm divides the metallic vessel into a storage space and a pneumatic room. Each of the connectors includes a nipple and an anti-leak assembly. The nipples of the connectors are mounted on the side and top of the upper shell respectively and are in communication with the storage space. The two anti-leak assemblies provide leakproof connection between the nipples and the plastic liner. Additionally, the nozzle is mounted on the third planar area to be in communication with the pneumatic room.
Abstract:
A method for deploying a gas storage vessel below the surface of the water comprises coupling an upper end of the gas storage vessel to a deployment apparatus positioned at the surface of the water. The gas storage vessel has a total dry weight and a lower end opposite the upper end. The gas storage vessel also includes a storage tank defining an inner region inside the tank and an exterior region outside the tank. In addition, the method comprises lowering the gas storage vessel below the surface of the water with the deployment apparatus. Further, the method comprises pumping a buoyancy control gas into the inner region of the tank. The buoyancy control gas in the inner region of the tank generates a buoyancy force acting on the gas storage vessel.
Abstract:
The present disclosure teaches apparatuses, systems, and methods for improving energy efficiency using high heat capacity materials. Some embodiments include a phase change material (PCMs). Particularly, the systems may include a re-gasification system, a liquefaction system, or an integrated system utilizing a heat exchanger with a regenerator matrix, a shell and tube arrangement, or cross-flow channels (e.g. a plate-fin arrangement) to store cold energy from a liquefied gas in a re-gasification system at a first location for use in a liquefaction process at a second location. The regenerator matrix may include a plurality of PCMs stacked sequentially or may include a continuous phase material comprised of multiple PCMs. Various encapsulation approaches may be utilized. Reliquefaction may be accomplished with such a system. Natural gas in remote locations may be made commercially viable by converting it to liquefied natural gas (LNG), transporting, and delivering it utilizing the disclosed systems and methods.
Abstract:
A pressure tank includes a metallic vessel, a plastic liner received in the metallic vessel, a flexible diaphragm, two metallic joints, two anti-leak assemblies and a nozzle coupled to the metallic joints respectively. The metallic vessel includes upper and lower shells. The upper shell defines a first planar area on a side thereof and a second planar area on a top thereof. The lower shell defines a third planar area therebottom. The flexible diaphragm divides said metallic vessel into a storage space and a pneumatic room. The metallic joints are mounted on the side and top of the upper shell respectively and are in communication with the storage space. The two anti-leak assemblies provide leakproof connection between the metallic joints and the plastic liner. Additionally, the nozzle is mounted on the third planar area to be in communication with the pneumatic room.
Abstract:
A liquefied natural gas (LNG) re-gasification unit wherein a buoy can be floated in the water for engaging a floating vessel for transport of LNG and a storage vessel can have a deep water gas storage system for storing a compressed gas. A inflexible thin single walled vessel can be for storing compressed gas under water in deep water, wherein the storage vessel is pressure equalized by water surrounding the inflexible thin single walled vessel. A compressed gas intake can be for admitting and discharging compressed gas to and from the inflexible thin single walled vessel. A water port can be for admitting and discharging water to the inflexible thin walled storage vessel and a valve disposed at the compressed gas intake to the inflexible thin single walled vessel for controlling compressed gas admission and discharge to the vessel.
Abstract:
An apparatus for compressing a gas and its uses are disclosed. The apparatus comprises a fixed-volume container having a hollow and a moveable element subdividing said hollow into a first variable-volume portion and a second variable-volume portion, the second variable-volume portion having an opening for introducing therein a hydraulic and/or pneumatic fluid under pressure, for causing an increase in the volume of said second variable-portion by moving said moveable element, thereby, consequently, decreasing the volume of the first variable-volume portion and compressing a gas contained therein.
Abstract:
Liquefied natural gas is stored under water in a submerged, jacketed container the interior of which is coupled to a balancing fluid in another container, the balancing fluid being in turn coupled to the water surrounding both containers. The containers are fastened together, and the assembly is ballasted as appropriate, or required.
Abstract:
The invention relates to a tank for a cryogenic liquid gas, in particular for LNG; that is, for liquid natural gas or liquid methane. The invention further relates to an aircraft having such a tank and to a method for producing such a tank. A tank is produced, which comprises an outer, dimensionally stable structure and a pressure-resistant, cold-resistant film which is able to suitably capture an overpressure resulting from boil-off gas in the tank. The suitably flexible film is coiled so that a hose-shaped chamber or a hose-like sleeve is thus formed. With the aid of the film, a sufficiently pressure-resistant, cold-resistant, light tank for storing cryogenic liquid gas can be provided according to the invention, which can also be subsequently installed in an aircraft primarily due to the flexibility of the film.
Abstract:
The present disclosure teaches apparatuses, systems, and methods for improving energy efficiency using high heat capacity materials. Some embodiments include a phase change material (PCMs). Particularly, the systems may include a re-gasification system, a liquefaction system, or an integrated system utilizing a heat exchanger with a regenerator matrix, a shell and tube arrangement, or cross-flow channels (e.g. a plate-fin arrangement) to store cold energy from a liquefied gas in a re-gasification system at a first location for use in a liquefaction process at a second location. The regenerator matrix may include a plurality of PCMs stacked sequentially or may include a continuous phase material comprised of multiple PCMs. Various encapsulation approaches may be utilized. Reliquefaction may be accomplished with such a system. Natural gas in remote locations may be made commercially viable by converting it to liquefied natural gas (LNG), transporting, and delivering it utilizing the disclosed systems and methods.
Abstract:
A fluid tight container for storage and transportation of high pressure compressed gas, the container (110) having a first connection (112) which serves as an inlet and outlet for gas to be stored in the container, a flexible impermeable membrane (111) dividing the container into a first portion (115) for gas and communicating with the first connection, and a second portion (116) for liquid, in which the second portion communicates with a second connection (114) for introducing or withdrawing liquid from the second portion. The invention facilitates the charging and discharging of the gas at a controlled pressure.