Abstract:
An installation is provided for the deflagration of explosives. The installation includes a splinter and explosive-proof tunnel housing having open ends and receiving a deflagration reactor positioned inside the tunnel housing and having an entry passageway and entry zone, a deflagration zone and an exit zone and exit passageway. A conveyor device extends from outside the reactor and into and through and out of the reactor and includes a plurality of carriers movable along the conveyor device for receiving and transporting explosives into and through the entry zone and into the reactor zone for ignition and burning of the explosives in the reactor zone. Each of the carriers includes a device for closing in substantially air-tight manner the entry passage and the exit passage as the carrier moves through the reactor. Devices cooperate with the device for closing the entry passageway and the exit passageway for allowing a controllable residual airflow through the reactor.
Abstract:
In a treatment or processing or sewage sludge in the sense of recycling, where the sewage sludge is to begin with dried (T), subsequently converted (K) under anaerobic conditions at approximately 250.degree. to 350.degree. C. and finally is sintered at at least 1250.degree. C. in successive steps, it is proposed to perform all process steps including the conveyance of the commodity to be processed between the individual processing steps successively in continuous passage in a closed system. Only the vapors are removed in this system in the drying stage (T) and the conversion gases in the conversion stage (K) and they are condensed; the heat quantity contained in the flue gas generated during the sintering process (S) is utilized for heating to begin with the conversion stage (K) and after that the drying stage (T). Because the flue gases are used for heating the processing steps in the sequence of the naturally occurring temperature gradient, the processing of the sewage sludge is achieved so as to be nearly self-sufficient as far as the energy requirement is concerned, meaning the energy required for the processing is largely supplied by the calorific value of the organic ingredients contained in the sewage sludge itself. Because the sewage sludge is processed in a closed system, nefarious effects upon the environment are avoided.
Abstract:
A pyrolyzer has a heated inner housing that includes first and second conveyors. Preferred conveyors have independent or at least potentially independent flows of material to be pyrolyzed. All suitable conveyors are contemplated, including especially screw conveyors, or combination of screw and paddle conveyors. Both first and second conveyors can be disposed within a common lumen, with a partial divider between them. An alternative divider is also contemplated that more or less divides the inner housing into two lumens. Thus, the lumens can be entirely distinct, or can have cross-flow of gases and/or material being pyrolyzed. Heat transfer fins can be advantageously attached, extend from, or be otherwise coupled to the inner housing to assist in transfer of heat into the lumen(s) of the inner housing.
Abstract:
An apparatus for treating waste material that comprises four major cooperating subsystems, namely a pyrolytic converter (24), a two-stage thermal oxidizer (26), a steam generator (28) and a steam turbine (30) driven by steam generated by the steam generator. In operation, the pyrolytic converter is uniquely heated without any flame impinging on the reactor component and the waste material to be pyrolyzed is transported through the reaction chamber of the pyrolytic converter by a pair of longitudinally extending, side-by-side material transporting mechanisms (42, 43).
Abstract:
A waste is dry-distilled in a gasification furnace and generated combustible gas is combusted in a combustion furnace. A temperature in the combustion furnace is set to be substantially constant at a first preset temperature or more. When the temperature in the combustion furnace is greater than the first preset temperature by combustion of other fuels, the combustible gas is introduced. When the temperature in the combustion furnace reaches a second preset temperature or more by the combustion of only the combustible gas, the combustion of the other fuels is finished. When the temperature in the combustion furnace falls below a third preset temperature the combustion of the other fuels is resumed. When the temperature in the gasification furnace falls below a fourth preset temperature, the combustion of the other fuels is finished.
Abstract:
A furnace has a dual structure for carbonizing material. The furnace has a group of inner chambers and an outer chamber. Each of the inner chambers has a lid which can open and close to input the material for carbonizing. The outer chamber moves so that the group of inner chambers is housed in the outer chamber. Due to this, a combustion space is formed between the group of inner chambers and the outer chamber so as to heat each of the inner chambers to dry the material by distillation.
Abstract:
Organic material, such as kraft black liquor, organic fuels, garbage and organic wastes, is destructively distilled and pyrolyzed at an elevated temperature and for a time sufficient to break down the material to noncombustible solids and to a stable gaseous clean burning fuel. The temperature is maintained to preclude recombination of intermediate products formed during the pyrolysis and which would otherwise pollute the atmosphere. A controlled amount of oxygen is continuously introduced during the cracking to provide energy by exothermic oxidative reactions but the oxygen is insufficient to effect stoichiometric or in other words complete combustion.
Abstract:
The present invention relates to reaction equipment for the treatment of organic and/or inorganic waste of refineries or petrochemical plants comprising: •—a drying and pyrolysis device (4) which rotates around its longitudinal, tilted rotation axis (A), •—a gasification device (6) which rotates around its longitudinal, horizontal rotation axis (B), •—a combustion device (14) comprising a burner (13) having a longitudinal horizontal axis (C), •—at least one settling chamber (15) for the collection of intermediate solid residues and the accumulation of intermediate gaseous reaction products, •—at least one outlet duct of the gaseous end-products (16), at least one outlet duct of the solid end-products (7), and at least one inlet duct of the feedstock (2) •—said combustion device (14), drying and pyrolysis device (4), gasification device (6) are physically separated and positioned on three different levels, •—the longitudinal rotation axis (A) of the drying and pyrolysis device (4) is tilted with respect to both the longitudinal rotation axis (B) of the gasification device (6) and also with respect to the longitudinal axis (C) of the combustion device (14), •—the longitudinal rotation axis (B) of the gasification device (6) is parallel to the longitudinal axis (C) of the combustion device (14), •—the combustion device (14) is in fluid communication with the drying and pyrolysis device (4), •—the drying and pyrolysis device (4) comprises, in its interior, a first indirect heat exchange device (3) in which the combustion fumes coming from the combustion device (14) flow, •—at least one settling chamber (15) in fluid communication with said drying and pyrolysis device (4) and with said gasification device (6) and with said combustion device (14), •—conveying means (5) are positioned in the settling chamber (15) and put the drying and pyrolysis device (4) in fluid communication with the gasification device, •—it comprises a second heat exchange device (12) in fluid communication with the first indirect heat exchange device (3) and the combustion device (14), •—it comprises means for the suction of the intermediate gaseous reaction products, said means being positioned in the settling chamber (15).
Abstract:
The invention relates to a process for drying sludge having the following steps: a) applying a sludge having a dry matter content of 15% to 30% to a floor of a drying hall (10), or sludge already present, b) predrying the sludge in the drying hall (10), wherein the sludge is mixed, c) introducing at least a part of the predried sludge into a heated thermal dryer (12), wherein the sludge introduced in each case into the thermal dryer (12) is replaced in the drying hall (10), by carrying out the step a), by a sludge having a dry matter content of 15% to 30% which then likewise passes through step b), d) drying the sludge in the thermal dryer (12) to a dry matter content of 80% to 95%, wherein air (14) taking up moisture from the sludge flows over or through the sludge, wherein the air (14) is brought to a temperature in a range from 70° C. to 160° C., or wherein, by heating the sludge, water vapor is liberated from the sludge, wherein the sludge, after achieving the dry matter content of 80% to 95%, is discharged from the thermal dryer (12), wherein the sludge discharged from the thermal dryer in each case is replaced by predried sludge by carrying out step c), which predried sludge then likewise passes through step d), e) passing the air (14) heated in step d), or the water vapor through a first region of a heat exchanger (17), through which ambient air (16) passes in a second region, wherein the air (14) heated in step d) or the water vapor releases heat to the ambient air (16), with condensation of the moisture present in the heated air or in the water vapor, wherein the heated air (14) or the water vapor is cooled to a temperature in the range from 10° C. to 60° C., and the ambient air (16) is heated to a temperature at most 40 K above the ambient temperature and the former temperature is at most 50° C., and f) promoting the predrying according to step b) by introducing the ambient air (18) heated in step e) into the drying hall (10), in such a manner that the ambient air (16) flows onto or over the surface of the sludge applied to the floor of the drying hall (10).
Abstract:
An apparatus for treating waste material that comprises four major cooperating subsystems, namely a pyrolytic converter (24), a two-stage thermal oxidizer (26), a steam generator (28) and a steam turbine (30) driven by steam generated by the steam generator. In operation, the pyrolytic converter is uniquely heated without any flame impinging on the reactor component and the waste material to be pyrolyzed is transported through the reaction chamber of the pyrolytic converter by a pair of longitudinally extending, side-by-side material transporting mechanisms (42, 43).