Abstract:
A closed-loop system includes a pump driving a fluid through a series of conduits. A control system is included that minimizes pressure fluctuations in a bootstrap reservoir to maintain a desired minimum pressure at the pump inlet. Moreover, the control system reduces a maximum system pressure by reducing the magnitude of pressure fluctuations encountered by the bootstrap reservoir.
Abstract:
A method includes associating a plurality of valve balancing units with a plurality of valves in a hydronic network. The method also includes adjusting a setting of at least one of the valves using at least one of the valve balancing units to balance the hydronic network. Adjusting the setting could include identifying a differential pressure across a valve and a flow rate of material through that valve. Adjusting the setting could also include comparing the identified differential pressure to a target differential pressure and/or the identified flow rate to a target flow rate. Adjusting the setting could further include instructing an actuator to adjust the setting until the identified differential pressure is within a first threshold of the target differential pressure and/or the identified flow rate is within a second threshold of the target flow rate.
Abstract:
A heating-cooling system has a plurality of users, a piping system subdivided into a plurality of zones in each of which a respective group of the users is connected in parallel, a heater or cooler having a supply line and a return line connected to the zones, a pump connected to the heater or cooler and to one of the lines for flowing a heat-exchange medium through the respective users, and respective flow-control valves connected in each of the zones for controlling flow of the medium therethrough and establishing in the respective zones a respective differential pressure. Flow in the zones is adjusted by controlling the respective valves to make a detected actual value of the differential pressure in the zone correspond to a set-point value previously detected and stored, with the differential pressure across each of the control valves being similarly feedback controlled.
Abstract:
Disclosed is a control system for controlling a plurality of fluidly and operably connected water heaters to meet a hot water demand such that overall efficiency is maximized and usage disparity between water heaters is minimized. There is further disclosed a method for detecting a small system demand in said network by adjusting the setting of each flow limiting valve of each water heater. There is still further disclosed a method for enabling seamless addition or removal of a heater in service and heating load distribution to water heaters.
Abstract:
The invention relates to a flow adjustment valve (1) comprising a valve housing (2) having a flow channel (3) and a pipe stub (10), disposed at an angle to the flow channel (3). A throttle unit (6) is arranged in the flow channel (3) and comprises a throttle element (8) that can be actuated through the pipe stub (10). The flow adjustment valve also comprises two measuring points (14, 15) for detecting the pressure in the flow channel (3) at both sides of a throttle arrangement, each of which measuring points being connected to a pressure measuring connection (17) via a pressure measuring channel (26, 27). The aim of the invention is to improve the design options for a flow adjustment valve of the aforementioned type. For this purpose, at least one pressure measuring channel (26) is guided through the pipe stub (10).
Abstract:
A water heating system having a system inlet pipe (1.002), a hot water delivery pipe (1.003) and a hot water return pipe (1.006) connected to a building hot water distribution network (1.024); the water heating system including one or more water heaters (1.001), the or each water heater having a heater inlet (1.022) and a heater outlet (1.023), a hot water return pipe (1.006) connected between the system inlet and delivery outlet via the building hot water distribution network to form a close loop hot water supply-return circuit; a pump (1.005) connected to circulate water through the hot water supply-return circuit whereby the pump can circulate water through one or more of the water heaters; a valve means (1.007) a first non-return valve adapted to prevent inlet water (water delivered to the system inlet) from flowing into the hot water return pipe or the building hot water distribution network.
Abstract:
The invention relates to a flow regulating valve (1) for liquid-conducting heating or cooling systems, consisting of a housing (2) with an inlet (3), an outlet (4), and a connecting piece (13) which is arranged between the inlet and outlet and into which a pressure regulating device (14) that keeps the pressure difference between the pressure regions in front of and behind a flow regulating unit (8) arranged in the connecting piece constant and a spindle (7) with an actuating part protruding out of the housing (2) and with a first throttle element (9) located in the housing (2) are inserted, said first throttle element acting on the flow regulating unit or parts thereof. The flow regulating unit (8) consists of a first throttle device, which is made of the first throttle element (9) that is secured to the spindle (7) and a seat (10), and a second throttle device, which is made of a second throttle element (11) that is arranged on the spindle (7) in a movable manner along same and a seat, wherein the second throttle element (11) can be moved in the direction of the first throttle element (9).
Abstract:
An automatic balancing valve is disclosed which is equipped with choking means that can be operated manually with a ring nut placed below the actuating member of the shutter and aligned axially therewith. Advantageously, the dimensions of the ring nut are larger in plan view compared to the plan view dimensions of the actuating member so as to allow its rotation without removing the actuating member.
Abstract:
It is possible to realize flow rate control regardless of the scale on a load side or a piping system and to achieve energy saving. In a host control device (20) of a heat source system, a bypass valve opening command value is determined by an opening command value determination unit (22) such that a header differential pressure matches a target differential pressure value, and a target opening value according to the header differential pressure or the behavior of the bypass valve opening is set by a target opening value setting unit (24). A heating medium flow rate set value is determined by a heating medium flow rate setting unit (23) using the target opening value set by the target opening value setting unit (24) and the opening command value determined by the opening command value determination unit (22).
Abstract:
An on demand tankless water heater system that is capable of quickly delivering water within a desired temperature range. The tankless water heater provides a hybrid heating method that contains a primary heating system and a secondary heating system disposed in a buffer tank that cooperate to facilitate control of output water temperature during water usage. A pressure differential switch detects low flow demand and allows the secondary heating system to provide immediate heating to the water. This secondary heating system provides a faster temperature response and fine tuning of output water temperature.