Abstract:
It is object to suppress a fluctuation in an amount of light reflected from a to-be-illuminated surface having a directional property in reflectance characteristics and improve usage efficiency of a bundle of light beams emitted from a light source. In order to achieve the above object, an illumination device that illuminates a to-be-illuminated surface, includes: a surface light source being disposed on a normal line of the to-be-illuminated surface; and a reflection mechanism being provided between the surface light source and the to-be-illuminated surface so as to surround the normal line for reflecting a light emitted from the surface light source toward the to-be-illuminated surface, wherein in the reflection mechanism, a reflection region that reflects the light toward the to-be-illuminated surface and a non-reflection region that does not reflect the light toward the to-be-illuminated surface are alternately disposed along a virtual cylindrical surface surrounding the normal line in a circumferential direction of the virtual cylindrical surface, and three or more reflection regions and three or more non-reflection regions are thereby disposed, each of the three or more reflection regions is a region having a partially-cylindrical shape to follow the virtual cylindrical surface, and the three or more non-reflection regions are dispersedly disposed to surround the normal line in the circumferential direction.
Abstract:
The color of light emitted by an assembled light emitting diode (LED) based illumination device with at least two different wavelength converting materials is automatically tuned to within a predefined tolerance of a target color point by modifying portions of the wavelength converting materials. The color of light emitted from the assembled LED based illumination device is measured and a material modification plan is determined based at least in part on the measured color of light and a desired color of light to be emitted. The material modification plan may further include the location of the wavelength converting materials to be modified. The wavelength converting materials are selectively modified in accordance with the material modification plan so that the assembled LED based illumination device emits a second color of light that is within a predetermined tolerance of a target color point.
Abstract:
An integrating sphere, and an integrating sphere-based reflectance colorimeter/spectrophotometer for the measurement of color and appearance, having multiple receivers capable of concurrently receiving optical radiation scattered/reflected from a diffusely illuminated sample surface, with the capability of multiple measurement modes (e.g., multiple specular component excluded (SCE), SCE and specular component included (SCI), multiple SCI), multiple areas-of-view for a given measurement mode, multiple viewing angles per measurement mode, and combinations thereof. An embodiment of the invention includes two SCI receivers and two SCE receivers, each disposed at an equal viewing angle relative to the sample surface. For each viewing mode, two sample areas-of-view are provided. The SCE receivers are opposite each other, such that the specular component of each SCE receiver is excluded by the port of the other SCE receiver. The receivers provide the collected light reflected from the sample to a detector which preferably is provided by multiple spectrometers or a single spectrometer having multichannel capability to preferably sense the light from each receiver in parallel.
Abstract:
A portable spectrophotometer (100) includes a rotating wheel (214) provided with a plurality of filter characteristics in the 400 to 700 nanometer wavelength range and operated at a constant speed. The filters are moved between an optical conduit (210) and a photoelectric sensor (220) as the wheel is rotated. Light reflected from the object sample is conducted through the optical conduit (210) and focused on the optical sensor (220) by means of a focusing lens (252). A side sensor (222) receives light from one of the three lamps (206) through the filters as the wheel is rotated and provides output signals which are used as reference signals for the individual filters. An integrating sphere (512) with an aperture (541) for conducting specular-included light reflected from the object and an aperture (543) for conducting specular-excluded light from the object is incorporated with a rotatable filter wheel (520), with a plurality of filters having filter characteristics in the 400-700 nanometers wavelength range.
Abstract:
A colorimeter for reading color bars (403, 404) of printed sheets (401) or the like includes a longitudinally extending base (400) including a paper stop (442) along which a sheet to be tested for color may be positioned. An autonomously operating colorimeter head (410) is moved along the base in a direction parallel to the edge of the sheet by means of an electric motor (600) mounted on the base and driving an helical thread lead screw (418) engaging an X-axis carriage supporting the head. The head is moved by operation of the lead screw in a direction parallel to the edge of the sheet, referred to as the direction of the X-axis. The head includes an electric motor and a Y-axis transport supporting an optics unit (510). The optics unit is moved within the head in a direction parallel to a Y-axis, extending perpendicularly to the X-axis.
Abstract:
A portable spectrophotometer (100) includes a rotating wheel (214) provided with a plurality of filter characteristics in the 400 to 700 nanometer wavelength range and operated at a constant speed. The filters are moved between an optical conduit (210) and a photoelectric sensor (220) as the wheel is rotated. Light reflected from the object sample is conducted through the optical conduit (210) and focused on the optical sensor (220) by means of a focusing lens (252). A side sensor (222) receives light from one of the three lamps (206) through the filters as the wheel is rotated and provides output signals which are used as reference signals for the individual filters. An integrating sphere (512) with an aperture (541) for conducting specular-included light reflected from the object and an aperture (543) for conducting specular-excluded light from the object is incorporated with a rotatable filter wheel (520), with a plurality of filters having filter characteristics in the 400-700 nanometers wavelength range.
Abstract:
본 발명은 적분구 광도계 및 그 측정 방법을 제공한다. 이 적분구 광도계는 복수 개의 광 검출기들, 광 검출기들에 대응하여 형성된 관통홀들을 포함하는 적분구, 광 검출기들 앞에서 광 검출기들과 이격되어 적분구의 내부에 배치되는 차광막들, 관통홀에 배치되는 광도계, 적분구 내의 중심 영역에 배치된 표준 광원이 조사하는 광에 대하여 동일한 반응 특성을 가지도록 광 검출기들 및 광도계의 출력 신호를 보정하는 조정부를 포함한다.
Abstract:
본 고안은 여러 규격으로 구분된 색채 프로파일(profile)을 통합하여 색채 계측에 적용할 수 있도록 하고, PC, 인터넷 등의 네트워크에 간편하게 연결되어 실시간의 데이터 통신 및 데이터 베이스의 생성이 가능하며, 휴대가 편리하도록 한 반사광을 이용한 색채 계측장치에 관한 것이다. 이를 위해 본 고안은, 색채 신호가 입력되면, 입력된 색채 신호에서 R, G, B의 색채 구성을 추출하고, 이를 이미 설정된 색채 프로파일에 대응하는 수치로 출력하는 색채 계측장치에 있어서, 측정대상에 광을 조사하는 측정광원과; 상기 측정광원의 광이 측정대상에 반사되어 귀환되는 반사광을 수광하여 색채를 감지하는 대상센서와; 상기 측정광원의 광이 측정대상을 제외한 구간에 반사되어 귀환되는 반사광을 수광하는 주변센서와; 상기 대상센서와 주변센서에서 수광된 신호를 수신하여, 색채 신호에서 R, G, B의 색채 구성을 추출하고, 이를 이미 설정된 색채 프로파일과 비교판단하여 각 구성을 제어하는 중앙처리부와; 상기 중앙처리부에서 처리된 데이터를 PC로 전송하기 위해 설치된 USB포트를 포함하는 것을 특징으로 하는 반사광을 이용한 색채 계측장치를 제공한다. 색채, 컬러센서
Abstract:
본 발명은 양방향 컬러 일치를 형식화하는 방법, 시스템 및 컴퓨터 제품에 관한 것이다. 본 발명에서, 계산 장치(18)는 타겟의 양방향 컬러의 스펙트럼 측정값을 획득한다. 계산 장치(18)는 양방향 컬러 형식화 툴(36)을 이용하여, 타겟의 양방향 컬러의 스펙트럼 측정값에 일치하는 스펙트럼 측정값을 생성하는 안료, 염료 및 혈소판 형상의 안료의 조합을 결정한다.
Abstract:
조립된 LED 기반 조명장치에 의해 방출된 다수의 색의 광은 서로 관련된 파장변환재료들의 부분들을 수정함으로써 다수의 목표 색점들의 미리 정해진 공차 내로 자동 조정된다. 제1 전류에 응답하여 상기 조립된 LED 기반 조명장치에 의해 방출된 광의 제1 색이 측정되고, 제2 전류에 응답하여 상기 조립된 LED 기반 조명장치에 의해 방출된 광의 제2 색이 측정된다. 파장변환재료를 수정하기 위한 재료수정계획이, 광의 측정된 색들과 방출되기 원하는 광의 색들에 적어도 부분적으로 기초하여 결정된다. 파장변환재료들은 상기 조립된 LED 기반 조명장치가 목표 색점의 미리 결정된 공차 내에 있는 광의 색을 방출하도록 상기 재료수정계획에 따라 선택적으로 수정될 수 있다.