Abstract:
An apparatus for measuring the optical properties of an LED package includes: a light detection unit detecting light output from a plurality of LED packages of an LED package array in order to measure the optical properties of each of the LED packages; a mounting unit fixing the LED package array thereon when the optical properties thereof are measured; and a voltage application unit applying a driving voltage to the individual LED packages in the LED package array when the optical properties of the LED packages are measured.
Abstract:
A system embodiment comprises and LED array, an optical plane, optics, a sensor and a controller. The LED array is configured to generate LED light. The optical plane has a plurality of scattering features and with a mixing chamber. The optics is configured to direct the LED light to the optical plane. The plurality of scattering features are configured to reflect a sampled portion of the LED light into the mixing chamber. The mixing chamber is configured to mix the sampled portion of the LED light. The sensor is configured to sense the sampled portion of the LED light received from the mixing chamber. The controller is connected to the sensor and configured to control the LED array using the sensed, sampled portion of the LED light received from the mixing chamber.
Abstract:
An apparatus for examining spectral characteristics of an object may include a chuck configured to support and releasably fix the object, wherein the chuck is larger than the object, a first light source assembly integral with the chuck and configured to illuminate a bottom surface of the object with light having a predetermined spectrum and intensity, and a transmission analysis unit for collecting and analyzing light transmitted through the object. The first light source assembly may include multiple and/or adjustable light sources. A second light source assembly may illuminate a top surface of the object, and a reflection analysis unit may collect resultant reflected light.
Abstract:
An integrated spectral sensing engine featuring energy sources and detectors within a single package that includes sample interfacing optics and acquisition and processing electronics. The miniaturized sensor is optimized for specific laboratory and field-based measurements by integration into a handheld format. Design and fabrication components support high volume manufacturing. Spectral selectivity is provided by either continuous variable optical filters or filter matrix devices. The sensor's response covers the range from 200 nm to 25 μm based on various solid-state detectors. The wavelength range can be extended by the use of filter-matrix devices. Measurement modes include transmittance/absorbance, turbidity (light scattering) and fluorescence (emission). On board data processing includes raw data acquisition, data massaging and the output of computed results. Sensor applications include water and environmental, food and beverage, chemical and petroleum, and medical analyses. These can be expanded into various field and consumer-based applications.
Abstract:
An imaging spectrometric instrument is disclosed. This instrument can include an imaging detector and one or more calibration standards having different optical properties. Portions of one or more actuators can move the calibration standards between the imaging detector and a sample. This instrument can use the actuator(s) to acquire an image of a sample and measure light and dark reference calibration values in quick succession at a given wavelength, before the instrument is tuned to another wavelength.
Abstract:
A standard plane sample which supplies an optical characteristic measuring device with reference data. The standard plane sample including a sample portion that is measured by the optical characteristic measuring device to supply measurement data, and a recording medium that stores identification data for identifying a kind of the sample portion as well as reference data corresponding to the optical characteristic of the sample portion.
Abstract:
In a multi-angle colorimeter having an illumination system that illuminates a sample surface and a plurality of light receiving systems that receive reflected light therefrom, an illumination system for orientation error detection is provided that illuminates the sample surface from substantially close direction to the normal of the sample surface. Actual measured reflectance factor is corrected based on the specific approximation function obtained from the measured reflectance factor and detected orientation error.
Abstract:
In a multi-angle calorimeter having an illumination system that illuminates a sample surface and a plurality of light receiving systems that receive reflected light therefrom, an illumination system for orientation error detection is provided that illuminates the sample surface from substantially close direction to the normal of the sample surface. Actual measured reflectance factor is corrected based on the specific approximation function obtained from the measured reflectance factor and detected orientation error.
Abstract:
The invention is a cable identifier apparatus and a method for fast identification of multi-wire or multi fiber cable. The method is based on illumination of colored buffer of the wire or fiber, registration the reflected light and comparison the measuring data with reference data stored in the memory. The reference data is loaded by measuring the color parameters of the buffer of known identification. The cable identifier apparatus comprises a portable hand-held device with a probe for fixing the buffer in a holder, illuminating the buffer, controlling the incident light and detecting the reflected light with photodetectors. The data is proceed by a microcontroller and an identification symbol of the buffer is displayed in LCD. The variation of the ambient light is compensated by separate measurement of dark and light signals from photodetectors.
Abstract:
Disclosed are a colorimeter and a reflectivity measuring method based on a multichannel spectrum. The colorimeter includes a main unit and a calibration box, wherein the main unit includes an integrating sphere, a light source and a main sensor, a detection hole is formed in one side of a top of the integrating sphere, a light-through hole is formed in a side of the integrating sphere, and a measuring port is formed in a bottom of the integrating sphere, the light source is arranged outside the light-through hole, and the main sensor is arranged outside the detection hole; the calibration box includes a housing and a white board arranged at a top of the housing, the white board is correspondingly matched with the measuring port, and the calibration box is connected with the main unit; the sensor is a multichannel spectral sensor.