Abstract:
The present invention relates to a device for optical characterisation of a sample and/or of the material/materials of the same having an illumination unit which is orientated or can be orientated to illuminate with incident light a sample spatial portion into which the sample can be introduced, a detection unit which is orientated or can be orientated to image the sample introduced into the sample spatial portion by receiving light reflected by the sample, and which is configured to detect at least two different, preferably two orthogonal, polarisation components in the reflected light, and an evaluation unit with which, in the imaging data recorded by the detection unit, those imaged surface elements (reflection elements) of the sample can be identified, the reflected, received light of which is based on a reflection of the incident light on the sample, and with which the detected different polarisation components for these reflection elements can be evaluated for optical characterisation.
Abstract:
A device for analysing a specimen by fluorescence includes a confocal microscope, illumination means capable of emitting a light beam that converges, by means of an objective, on a focal spot, means for successively positioning the focal spot at various points on the specimen during analysis. The confocal microscope includes an objective mounted on a movable rapid-scan carriage driven in a reciprocating linear movement along a traverse direction by a rotating motor by means of a device of the connecting rod type. The specimen is placed on a movable support driven in a longitudinal movement and is able to move along the axis of the objective of the microscope in order to position the specimen relative to the focal spot. The excitation light spectrum is spread over the surface of the specimen in such a way that the excitation light reflected by the specimen and corresponding to the wavelengths close to fluorescence converge on points that are sufficiently distant from a diaphragm positioned in front of a device for measuring the fluorescence.
Abstract:
A device and method solves the problems of improving precision, in particular in reducing movement of a cuvette, particularly lateral or side to side movement of a cuvette, during the measurement process. The device, which stabilizes a cuvette during a measurement read in an analyzer having a cuvette path of travel, includes: a fixed support located on a first side of the path of travel and abutting a side of the cuvette at a location that does not interfere with an optical window on the cuvette on which the measurement read takes place; and a movable support located on a second side of the path of travel and biased against a side of the cuvette at a location that does not interfere with the optical window on the cuvette on which the measurement read takes place, and which is opposite the side abutting the fixed support.
Abstract:
A system for detecting the presence of bacterial growth in a plurality of sample vials incorporates a single test station moveable along each of the plurality of sample vials. In one embodiment, the sensor station is movably mounted on a rod, and that rod is movably mounted on a pair of spaced rods. The rod which carries the test station may move along the spaced rods to change the location of the test station in a first dimension and the test station is moveable along its rod to change location in a second dimension. In this way, the test station may be moved through two dimensions to move serially to the location of each of the plurality of sample vials. In another aspect of this invention, a bar code is associated with each of the sample vials, and the test station makes a reading of that bar code concurrent with a determination being made as to whether there is any bacterial growth in the sample vial. In this way, it is ensured that the results of the evaluation of whether bacterial growth is ongoing will be associated with the proper sample vial. In a third aspect of this invention, the sample vial incorporates a plurality of distinct types of bacterial sensors. Thus, the advantages of each of several types of bacterial sensors may be incorporated into a single sample vial.
Abstract:
CMOS optický snímač obsahuje množství optických prvků pro zařízení ke zjišťování parametrů pohybující se příze (2) nebo jiného lineárního textilního útvaru na textilních strojích pomocí kolmého průměru příze (2) na jednotlivé optické prvky (41, 42) senzoru (4) prostřednictvím jediného zdroje (3) záření. Optické prvky (41, 42) senzoru (4) jsou uspořádány ve dvou rovnoběžných řadách kolmo ke směru pohybu průmětu příze (2). Každý optický prvek (41, 42) poskytuje na svém výstupu analogový signál odpovídající intenzitě jeho ozáření a každý optický prvek (41, 42) má obdélníkový tvar. Jednotlivé optické prvky (41) první řady jsou orientovány svými delšími stranami ve směru pohybu průmětu příze (2) a optické prvky (42) druhé řady jsou orientovány svými delšími stranami kolmo na směr pohybu průmětu příze (2).
Abstract:
The present invention relates to a device for optical characterisation of a sample and/or of the material(s) of the same having an illumination unit that can be orientated to illuminate with incident light a sample spatial portion into which the sample can be introduced, a detection unit which is orientated or can be orientated to image the sample introduced into the sample spatial portion by receiving light reflected by the sample, and which is configured to detect at least two different, preferably orthogonal, polarization components in the reflected light, and an evaluation unit with which, in the imaging data recorded by the detection unit, those imaged surface elements (reflection elements) of the sample can be identified, and with which the detected different polarization components for these reflection elements can be evaluated for optical characterisation.
Abstract:
An egg identification system for determining viability of an avian egg is provided. Such a system includes an emitter assembly configured to emit electromagnetic radiation toward an egg. A detector assembly is axially aligned with the emitter assembly to detect electromagnetic radiation transmitted through the egg. The detector assembly is spaced-apart from the egg during operation thereof such that the detector assembly does not contact the egg. The detected electromagnetic radiation is processed using transmission spectroscopy analysis to determine whether the egg is viable. An associated method is also provided.
Abstract:
A CMOS optical detector includes a plurality of optical elements for a device for detecting parameters of moving yarn or another linear textile formation on textile machines by means of a perpendicular projection of yarn onto individual optical elements of a sensor with the aid of one source of radiation. The optical elements are arranged in two parallel rows perpendicular to the direction of the movement of the projection of yarn. Each optical element produces an output analog signal corresponding to the intensity of its irradiation. The individual optical elements of the first row are oriented to have their longer sides in the direction of the movement of the projection of yarn, whereas the optical elements of the second row are oriented to have their longer sides perpendicular to the direction of the movement of the projection of yarn.
Abstract:
The invention relates to an apparatus comprising: a measuring head (10) having a slot (18) for receiving a measurement cell (26) and means (28) for emitting electromagnetic radiation, and means (32, 36) for detecting radiation from said emission means (28) after it has passed through the measurement cell (26); means (16) for translatably driving and means (12, 14) for translatably guiding, allowing the substantially vertical longitudinal movement of the measurement head (10); at least two recesses (44) each intended for receiving a measurement cell (26) and arranged one above the other in a longitudinal direction, the recesses (44) as well as the driving means (16) and the guiding means (12, 14) being configured such that during the translational movement of the measurement head (10) along the nominal travel thereof each recess is placed inside the slot (18) of the measurement head (10).
Abstract:
The present invention relates to a device for optical characterization of a sample and/or of the material(s) of the same having an illumination unit that can be orientated to illuminate with incident light a sample spatial portion into which the sample can be introduced, a detection unit which is orientated or can be orientated to image the sample introduced into the sample spatial portion by receiving light reflected by the sample, and which is configured to detect at least two different, preferably orthogonal, polarization components in the reflected light, and an evaluation unit with which, in the imaging data recorded by the detection unit, those imaged surface elements (reflection elements) of the sample can be identified, and with which the detected different polarization components for these reflection elements can be evaluated for optical characterization.