Abstract:
A flow cell (16) for absorbance detection with at least two different optical pathlengths (30, 32). It increases the range of analyte concentrations which can be measured compared with a conventional single path flow cell. Light from two paths (30, 32) is combined onto the same photodetector (20). Calibration with known samples allows analyte concentrations to be measured. The dual or multi-pathlength flow cell may be used in equipment designed for single path flow cells.
Abstract:
Wafer inspection apparatuses and methods are described. The wafer inspection apparatus includes an optical module, at least one wafer holder for carrying a plurality of wafers, and a plurality of optical sensors. The optical module is configured to emit a plurality of light beams for simultaneously scanning the plurality of wafers carried by the at least one wafer holder. The plurality of optical sensors is configured to receive the light beams reflected by the plurality of wafers.
Abstract:
A device for optical detection of analytes in a sample includes at least two optoelectronic components. The optoelectronic components include at least one optical detector configured to receive a photon and at least one optical emitter configured to emit a photon. The at least one optical emitter includes at least three optical emitters disposed in a flat, non-linear arrangement, and the at least one optical detector includes at least three optical detectors disposed in a flat, non-linear arrangement. The at least three optical emitters and the at least three optical detectors include at least three different wavelength characteristics.
Abstract:
The invention relates to a long path cell (10), in particular a Herriott cell, with (a) a primary minor (12) and (b) a secondary mirror (14). According to the invention, it is provided that the primary mirror (12) has a first primary minor segment (42.1) and at least one second primary minor segment (42.2), which radially surrounds the first primary mirror segment (42.1), whereby the primary minor segments (42) differ in their curvatures (R42.1, 42.2) or focal lengths, the secondary minor (14) has a first secondary minor segment (44.1) and at least one second secondary mirror segment (44.2) which radially sur-rounds the first secondary minor segment (44.1), whereby the secondary minor segments (44) differ in their curvatures (R42.1, R42.2) or focal lengths, the first primary mirror segment (42.1) and the first secondary minor segment (44.1) are arranged in relation to each other such that a light beam is reflected back and forth between the two, and that the second primary mirror segment (42.2) and the second secondary minor segment (44.2) are arranged in relation to each other such that a light beam is reflected back and forth between the two.
Abstract:
An apparatus and method for detecting microbes use laser speckles. The apparatus includes a light source configured to irradiate light into a sample to detect microbes, and a measuring part configured to measure laser speckles, which are formed due to a multiple scattering of the light which is incident into the sample, every reference time and to measure concentration of the microbes contained in the sample based on temporal correlation of the measured laser speckles.
Abstract:
A mobile device which senses particulate matter is provided. The mobile device includes a housing having an air flow path through which air flows when the mobile device is shaken; an inertia sensor that detects acceleration of the mobile device; a light-scattering type sensor that irradiates the air flow path with light and detects particulate matter in air flowing through the air flow path; and a controller that includes a counter for counting the particulate matter detected by the light-scattering type sensor, and a flow rate calculator for detecting an air flow rate of the air flow path based on a detection signal of the inertia sensor.
Abstract:
The present invention is thus directed to an automated system and method of varying the optical path length in a sample that a light from a spectrophotometer must travel through. Such arrangements allow a user to easily vary the optical path length while also providing the user with an easy way to clean and prepare a transmission cell for optical interrogation. Such path length control can be automatically controlled by a programmable control system to quickly collect and stores data from different path lengths as needed for different spectrographic analysis. Such a methodology and system, as presented herein, is able to return best-match spectra with far fewer computational steps and greater speed than if all possible combinations of reference spectra are considered.
Abstract:
The present invention is thus directed to an automated system and method of varying the optical path length in a sample that a light from a spectrophotometer must travel through. Such arrangements allow a user to easily vary the optical path length while also providing the user with an easy way to clean and prepare a transmission cell for optical interrogation. Such path length control can be automatically controlled by a programmable control system to quickly collect and stores data from different path lengths as needed for different spectrographic analysis. Such a methodology and system, as presented herein, is able to return best-match spectra with far fewer computational steps and greater speed than if all possible combinations of reference spectra are considered.
Abstract:
A gas detector including a planar mirror; a concave spherical mirror facing the planar mirror, having an optical axis orthogonal to the planar mirror, the distance between the planar and spherical being equal to 0.75 times the radius of curvature of the spherical mirror, to within 10%; a radiation emitter/receiver arranged at the point of intersection of the spherical mirror and of the optical axis; and a radiation receiver/emitter arranged at the point of intersection of the planar mirror and of the optical axis.
Abstract:
A time-domain waveform of a terahertz wave is measured by a method based on time-domain spectroscopy by using an optical delay unit to adjust an optical path length along which excitation light propagates thereby adjusting a difference between a time at which the excitation light arrives at a generating unit configured to generate the terahertz wave and a time at which the excitation light arrives at a detection unit configured to detect the terahertz wave. The optical delay unit is driven according to a first speed pattern to acquire a first time-domain waveform. The optical delay unit is then driven according to a second speed pattern different from the first speed pattern to acquire a second time-domain waveform. The first time-domain waveform and the second time-domain waveform are averaged.