Abstract:
비침습적 혈액성분 측정방법 및 장치가 개시된다. 비침습적 혈액성분 측정방법은 (a) 소정의 과도압력에 해당하는 초기두께보다 두꺼운 범위에서, 피검체의 측정하고자 하는 특정 부위의 두께를 가변시키고, 가변된 각 두께에서 측정된 흡수 스펙트럼들의 차이 흡수 스펙트럼과 실측된 특정 혈액성분의 농도를 이용하여 상기 혈액성분에 대한 통계모델을 수립하는 단계, 및 (b) 상기 통계모델에 근거하여, 상기 피검체의 특정 부위에서 측정된 차이 흡수 스펙트럼으로부터 해당 혈액성분을 예측하는 단계로 이루어진다.
Abstract:
The present invention relates to a method for analyzing samples comprising spermatozoa, said method comprising the use of a flow-through counting compartment, wherein the time period between the end of loading and closing is carried out in a controlled and specified time period. The present invention further relates to a counting compartment or chamber suitable for said method and to a counting device comprising said counting compartment.
Abstract:
A closed path infrared sensor includes an enclosure, a first energy source within the enclosure, at least a second energy source within the enclosure, at least one detector system within the enclosure and a mirror system external to the enclosure and spaced from the enclosure. The mirror system reflects energy from the first energy source to the at least one detector system via a first analytical path and reflects energy from the second energy source to the at least one detector system via a second analytical path. Each of the first analytical path and the second analytical path are less than two feet in length.
Abstract:
This disclosure is directed to exemplary embodiments of systems, methods, techniques, processes, products and product components that can facilitate users making improved absorbance or fluorescence measurements in the field of spectroscopy with reduced (minimal) sample waste, and increased throughput, particularly in the study of biological sciences. A measuring system is provided having: a base unit with a means for locating a pipette tip; a pipette tip designed to interact with the base unit for purposes of accurate pipette tip positioning; at least one light supplying unit positioned to supply light to a liquid sample in the pipette tip and at least one light collecting unit positioned to collect light from a liquid sample in the pipette tip.
Abstract:
A method for detecting clots in a liquid is presented. The liquid is in a sample container. Light is irradiated having a first wavelength to the sample container by a first light source at a changeable vertical irradiating position (P—0 to P_n) such that the light irradiated by the first light source passes through the sample container along a first measurement path. An intensity of light having the first wavelength passing along the first measurement path and exiting the sample container is measured. Clots are detected in response to the measured intensity.
Abstract:
A turbidity measuring device having a four-beam, alternating light arrangement for registering turbidity of a measured medium includes first and second light sources L1, L2; and first and second receivers R1, R2. The direct measuring paths extend from light sources Li, through a measured medium, to receivers Ri, and indirect measuring paths extend from light sources Li, through the measured medium, to second receivers Rj; wherein i≠j; wherein turbidity can be ascertained as a function of a quotient A/B by means of an evaluating circuit; wherein A and B are functions at least of signals registered via the direct or indirect measuring paths; wherein at least a first monitor signal, which depends on the first light source, enters into one of the two terms A or B; wherein the light reaches the monitor from the first light source without interaction with the measured medium; and wherein the monitor signal is added to at least one of the signals registered via the measuring paths and entering into the term A or B.
Abstract:
The biological information imaging apparatus includes an acoustic wave detector 107 that detects an acoustic wave that is generated from a light absorber 105 and converts it to a first electrical signal; a photo-detector 110 that detects intensities of the light corresponding to a plurality of propagation distances of the light which propagates through the specimen 110 and converts it to a second electrical signal; a signal processing apparatus 111 that derives an average effective attenuation coefficient μeff of the specimen 110 based on the second electrical signal and derives an optical absorption coefficient μa of the specimen 110 based on the first electrical signal and the average effective attenuation coefficient μeff; and an image constructing apparatus 111 that constructs an image of the distribution of the optical absorption coefficient μa based on the distribution of the optical absorption coefficient μa.
Abstract:
A turbidity measuring device having a four-beam, alternating light arrangement for registering turbidity of a measured medium includes first and second light sources L1, L2; and first and second receivers R1, R2. The direct measuring paths extend from light sources Li, through a measured medium, to receivers Ri, and indirect measuring paths extend from light sources Li, through the measured medium, to second receivers Rj; wherein i≠j; wherein turbidity can be ascertained as a function of a quotient A/B by means of an evaluating circuit; wherein A and B are functions at least of signals registered via the direct or indirect measuring paths; wherein at least a first monitor signal, which depends on the first light source, enters into one of the two terms A or B; wherein the light reaches the monitor from the first light source without interaction with the measured medium; and wherein the monitor signal is added to at least one of the signals registered via the measuring paths and entering into the term A or B.
Abstract:
A spectrophotometer (2) comprising a source of radiation (6), preferably optical radiation, disposed to emit radiation at a plurality of wavelengths towards a sample in a sample holder (4) and a detection arrangement 8 for detecting the radiation after its interaction with the sample. The sample holder (4) is adapted to present a plurality of different path lengths for the emitted radiation through the sample. An arithmetic unit (10;10b) is operably connected to receive an intensity dependent output from the detection arrangement (8) and is adapted to store an intensity value of the detected emitted radiation indexed to its wavelength at two or more path lengths of the plurality of different path lengths and to calculate a value dependent on the ratio of the indexed intensity values at each of two path lengths by which an indication of the presence of a substance of interest withiA spectrophotometer (2) comprise a source of radiation (6), preferably optical radiation, disposed to emit radiation at a plurality of wavelengths towards a sample in a sample holder (4) and a detection arrangement 8 for detecting the radiation after its interaction with the sample. The sample holder (4) is adapted to present a plurality of different path lengths for the emitted radiation through the sample. An arithmetic unit (10;10b) is operably connected to receive an intensity dependent output from the detection arrangement (8) and is adapted to store an intensity value of the detected emitted radiation indexed to its wavelength at two or more path lengths of the plurality of different path lengths and to calculate a value dependent on the ratio of the indexed intensity values at each of two path lengths by which an indication of the presence of a substance of interest within the retained sample can be obtained.