Abstract:
PURPOSE: A liquid crystal display device and a manufacturing method thereof are provided to increase side visibility by liquid crystal layers which are vertically and asymmetrically aligned. CONSTITUTION: A lower display plate(100) comprises a lower substrate and a lower alignment film. The lower alignment film is formed on the lower substrate. An upper display plate(200) includes an upper substrate and an upper alignment film. The upper alignment film is formed on the upper substrate. A liquid crystal layer of a vertical alignment mode is inserted between the lower display plate and the upper display plate. The liquid crystal layer has a plurality of liquid crystal molecules.
Abstract:
A multi-layer device comprising a first substrate, a first electrically conductive layer on a surface thereof, and a first current modulating layer, the first electrically conductive layer having a sheet resistance to the flow of electrical current through the first electrically conductive layer that varies as a function of position.
Abstract:
In a conductive film, a display unit is formed such that forms of sub-pixels for two colors different from each other are different, cycles of sub-pixel array patterns of respective colors are different, or a barycenter of a single sub-pixel within a single pixel is at a position different from that of a straight line connecting barycenters of the other sub-pixels. In such a case, a wiring pattern is formed such that an indicator of evaluation of moirés is equal to or less than a predetermined value. In frequencies and intensities of moirés of the respective colors calculated from peak frequencies and peak intensities of respective two-dimensional Fourier spectra of transmittance image data and luminance image data of the sub-pixel array patterns of the respective colors, the indicator of evaluation is calculated from evaluation values of moirés obtained by applying human visual response characteristics in accordance with an observation distance to intensities of moirés at frequencies of moirés equal to or less than the maximum frequency of the moirés prescribed on the basis of a display resolution of the display unit.
Abstract:
The present invention relates to a display device such as a liquid crystal display device including a first substrate and a second substrate with liquid crystal injected between the first and second substrates. In the display device, the second substrate includes a plurality of columnar spacers, and the first substrate has a protrusion in an area facing the top of the columnar spacer. The plurality of columnar spacers formed on the second substrate are not arranged at even intervals in the longitudinal direction of the scan line, and/or are not aligned on the line but are arranged at random.
Abstract:
A display device includes a first substrate, a second substrate, and a plurality of light emitting sections. The first substrate includes a first surface and a second surface which faces the first surface. The second substrate is arranged to face the first substrate, and is configured with a first surface which faces the second surface of the first substrate, and a second surface which faces the first surface. The plurality of light emitting sections is provided on the second surface of the first substrate while being separated from the second substrate. A light transmission suppression layer on which a light transmission section to transmit light from light emitting sections is provided is formed on the second surface of the second substrate in correspondence to each light emitting section. An anti-reflection layer is formed in the light transmission section.
Abstract:
The invention relates to an apparatus for generation of electromagnetic radiation, having a pump light source that emits an excitation radiation at a first wavelength, and having an optical waveguide that generates frequency-converted radiation at a second and a third wavelength, by means of degenerate wave mixing, from the excitation radiation of the pump light source.
Abstract:
A Mach Zehnder (MZ) modulator (1) includes a splitter (4) for splitting incident light in one wave guide (3) into two modulator arms (5,6) of the MZ and a combiner (7) that combines light from the two arms (5,6) into an output mode, where electrodes (9,10) are present in connection with the arms (5,6) for changing the refractive index in the arms in order to modulate incident light so that the light is amplified or so that an extinction, due to interference between the light in the two arms, takes place. The splitter (4) is arranged to split incident light equally into the two arms (5,6) and a part (11) of one of the arms (5) between the electrode (9) and the combiner (7) is designed to cause an intentional loss of light in the wave guide (5), whereby a desired asymmetry in transmission of the two arms (5,6) occurs.
Abstract:
The refractive index of the at least one photonic structure having two separate photonic bands is modulated, so that light supplied to the at least one photonic structure and initially in one of the two photonic bands of the traveling along a forward direction in the at least one photonic structure is converted to light in a second one of the photonic bands, and light in the one photonic band traveling along a backward direction opposite to the forward direction in the at least one photonic structure is not converted and remains in the one photonic band, achieving non-reciprocity. An interferometer comprises a first and a second photonic structure coupled at two coupler regions. The first photonic structure has two separate photonic bands. The refractive index of the first photonic structure is modulated, so that light supplied to the first photonic structure and initially in a first one of the photonic bands traveling along a forward direction in the at least first photonic structure is converted to light in a second one of the photonic bands, and light in the first photonic band traveling along a backward direction opposite to the forward direction in the at least first photonic structure is not converted and remains in the first photonic band. Light supplied to a first end of the first photonic structure and initially in the first photonic band traveling along a forward direction in the photonic structures will pass to a second end of the first photonic structure, and light supplied to the second end of the first photonic structure and traveling along a backward direction in the photonic structures will pass to an end of the second photonic structure.
Abstract:
A liquid crystal display device of an embodiment of the present invention includes a liquid crystal layer, a specular reflection layer, the polarization layer disposed on the viewer's side, a retardation layer interposed between the liquid crystal layer and the polarization layer, and a light scattering layer disposed on the viewer's side of the polarization layer. The light scattering layer has a scattering surface. The scattering surface includes a macro uneven structure which has light scatterability and a micro uneven structure which is superimposedly formed over the macro uneven structure and which is smaller than visible light wavelengths.
Abstract:
A reflector is provided in a reflective or transmissive liquid crystal display device. In the reflector, when light is incident on the reflector in a first direction, a reflection characteristic profile of light reflected therefrom shows a reflectance distribution which is asymmetric with respect to a specular reflection angle of the incident light and shows a non-Gaussian distribution in which a maximum value of reflectance is within a reflection angle range smaller than the specular reflection angle of the incident light. In addition, when light is incident on the reflector in a second direction perpendicular to the first direction, a reflection characteristic profile of light reflected therefrom shows the non-Gaussian distribution, similar to the case in which the light is incident on the reflector in the first direction.