Abstract:
A transmitting apparatus includes a first OFDM modulator that generates a first OFDM modulation signal by modulating a first information signal using a first modulation scheme, the first OFDM modulation signal having a plurality of subcarriers. A second OFDM modulator generates a second OFDM modulation signal by modulating a second information signal using the first modulation scheme, the second OFDM modulation signal having a plurality of subcarriers, and that generates a third OFDM modulation signal by changing a second position in an in-phase quadrature-phase plane in which a signal point of the second OFDM modulation signal is positioned, to a third position, the third position being different from a first position in the in-phase quadrature-phase plane in which a signal point of the first OFDM modulation signal is positioned. A multiplexer generates a multiplexed signal to be transmitted in a common frequency band, by multiplexing the first OFDM modulation signal and the third modulation signal. A transmitter transmits the multiplexed signal.
Abstract:
A method to receive telemetry messages over an RF channel, the method implemented by a system on a chip, in which a signal is received from the output of an input RF module, the received signal is offset in time and frequency wherein the signal, at first, is offset in time so that the offset magnitudes uniformly fill the length of one data bit, then, the signal is offset in frequency so that the offset magnitudes uniformly fill the space between the Fourier transform subcarriers, with the frequency offsets being independent of the time offsets; each signal processed at the preceding step is subjected to sequential Fourier transforms, with the first time element of each next transform immediately following the last element of the preceding transform; all messages are demodulated independently. The technical result consists in that messages can be received over multiple channels at multiple rates.
Abstract:
A heart generated signal is provided by a heart sensor of a mobile device to an analog to digital (A/D) converter for A/D converting the sensor provided signal. The A/D converted heart signal is processed to provide heart rate. The heart rate is recorded or stored in the mobile device or is transmitted in a wireless communication system. The mobile device receives sensor provided Electro Cardiogram (ECG) signal. The ECG signal is stored or is provided to an interface unit. The mobile device has transceivers for receiving and transmitting Orthogonal Frequency Division Multiplexed (OFDM) signals and for modulating and transmitting spread spectrum baseband signals. The spread spectrum baseband signals have cross-correlated in-phase and quadrature-phase filtered baseband signals.
Abstract:
Digital mobile communications devices and methods for processing, modulation and demodulation, transmission and reception of spread spectrum signals, Orthogonal Frequency Division Multiplexed (OFDM) signals and conversion of spread spectrum signals into OFDM signals. Received spread spectrum signals from 3G cellular systems are converted into OFDM signals and transmitted in a Wi-Fi network. Received OFDM signals, received in a cellular system in a first RF frequency band, are demodulated and in a repeater mode are re-transmitted in a cellular system in a second OFDM radio frequency band. One or more receivers and demodulators for receiving demodulating and processing received signals into location finder information. A video camera in mobile device generates video signal and transmits video signal with location finder information signal.
Abstract:
Digital mobile communications devices and methods for processing, modulation and demodulation, transmission and reception of spread spectrum signals, Orthogonal Frequency Division Multiplexed (OFDM) signals and conversion of spread spectrum signals into OFDM signals. Received spread spectrum signals from 3G cellular systems are converted into OFDM signals and transmitted in a Wi-Fi network. Received OFDM signals, received in a cellular system in a first RF frequency band, are demodulated and in a repeater mode are re-transmitted in a cellular system in a second OFDM radio frequency band. One or more receivers and demodulators for receiving demodulating and processing received signals into location finder information. A video camera in mobile device generates video signal and transmits video signal with location finder information signal.
Abstract:
Communication methods for receiving and demodulating in mobile devices signals from multiple locations and for providing baseband position finder signal. Providing in a first cross-correlator and filter cross-correlated in-phase and quadrature-phase filtered baseband signals from a digital input signal and in a second cross-correlator spread spectrum signals from a voice input signal. Providing Orthogonal Frequency Division Multiplex (OFDM) signal from a video input signal. Combining baseband position finder signal with one or more of cross-correlated in-phase and quadrature-phase filtered baseband signals, or cross-correlated in-phase and quadrature-phase spread spectrum baseband signals, or OFDM baseband signal, into a combined baseband signal and modulating and transmitting combined signal. Touch screen control signal for control of mobile devices.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period for carrier tracking. Further, the data processor, through combining two sets of BOC correlations with different chip spacings provides an alternative unambiguous code acquisition of the received signal.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.