Abstract:
A radio receiving apparatus according to the present invention receives a preamble signal through one frequency band and also detects a periodic symbol timing in a receiving period of a part of a symbol that composes the preamble signal. A frequency correction circuit includes a generating unit, a detecting unit, and a correction unit. The generating unit generates a detection window of a predetermined time width including each of a first and a second symbol timing that are previously determined among the periodic symbol timings in the receiving period of a remaining symbol that composes the preamble signal. The detecting unit sequentially receives a correlation value between the preamble signal and a reference signal and detects a maximum value from the correlation value input during a period when the detection window is opened. The correction unit corrects a frequency deviation of the one frequency band based on the maximum value.
Abstract:
Methods and apparatuses are provided that include providing transmit diversity for data channel transmissions. Different precoding vectors can be used over different slots of a given subframes to precode corresponding signals. The precoding vectors, in one example, can be orthogonal. In addition, using the different precoding vectors can be determined based on a user equipment receiving an indicator from a base station receiving the data channel transmissions of whether to use frequency hopping over the slots. Moreover, precoding vectors used to precode data channel transmissions can additionally or alternatively vary across subframes.
Abstract:
A method and apparatus for multiplexing frequency hopping in a wireless communication system using Orthogonal Frequency Division Multiple Access (OFDMA) is provided. The frequency hopping multiplexing method and apparatus efficiently indicates time division multiplexing for global hopping and local hopping by indicating and using the number and positions of slots for global hopping and local hopping to time-division-multiplex global hopping and local hopping in a reverse link, depending on information the number of Distributed Resource CHannels (DRCHs), provided from a transmitting side over a Forward link Secondary Broadcast Control CHannel (F-SBCCH), which is one of the forward common channels.
Abstract:
A method and apparatus for multiplexing frequency hopping in a wireless communication system using Orthogonal Frequency Division Multiple Access (OFDMA) is provided. The frequency hopping multiplexing method and apparatus efficiently indicates time division multiplexing for global hopping and local hopping by indicating and using the number and positions of slots for global hopping and local hopping to time-division-multiplex global hopping and local hopping in a reverse link, depending on information the number of Distributed Resource CHannels (DRCHs), provided from a transmitting side over a Forward link Secondary Broadcast Control CHannel (F-SBCCH), which is one of the forward common channels.
Abstract:
A method and apparatus for multiplexing frequency hopping in a wireless communication system using Orthogonal Frequency Division Multiple Access (OFDMA) is provided. The frequency hopping multiplexing method and apparatus efficiently indicates time division multiplexing for global hopping and local hopping by indicating and using the number and positions of slots for global hopping and local hopping to time-division-multiplex global hopping and local hopping in a reverse link, depending on information the number of Distributed Resource CHannels (DRCHs), provided from a transmitting side over a Forward link Secondary Broadcast Control CHannel (F-SBCCH), which is one of the forward common channels.
Abstract:
The present invention relates to a method for allocating communication resources in a multi-user cellular communication system, wherein communication resources are divided in time periods and frequency sub-bands, wherein part of the communication resources are used for frequency-localized communication channels, and part of the communication resources are used for frequency distributed channels. The method further comprises the steps of classifying part of the frequency sub-bands as frequency sub-bands carrying frequency-distributed channels, classifying the remaining part of the frequency sub-bands as frequency sub-bands carrying frequency-localized channels. The present invention also relates to a system, a transmitter and a communication system.
Abstract:
Systems, devices and methods are disclosed for detecting, characterizing and engaging unmanned vehicles. In one aspect, a method includes detecting an object, such as an unmanned aerial, land or aquatic vehicle that communicates using a radio control (RC) communications protocol, traveling to a zone including scanning one or more frequencies of RF signals; analyzing one or both of time and frequency information of the RF signals to characterize the detected object; and engaging the detected object as an authorized or unauthorized object in the monitored zone.
Abstract:
Durch die vorliegende Erfindung wird das Ausführen eines FOTA-Verfahrens in einem LoRa-Netz mit geringem Durchsatz und niedriger Leistung ermöglicht. Es wird angenommen, dass die in den Endknoten sowie im LoRa-Gateway benutzten Sender/Empfänger in der Lage sind, einen bestimmten Frequenzkanal auszuwählen und den LoRa-Modus zu deaktivieren. Wenn der Spreizspektrum-LoRa-Modus deaktiviert wird, werden beide Sender/Empfänger am Endknoten und dem Gateway stattdessen unter Verwendung eines grundlegenden FSK Frequency Shift Keying Modulationsschemas arbeiten. Dieses Modulationsschema ist in der Lage, eine höhere Datenrate auf Kosten des Verringerns der "Streckenbilanz" bereitzustellen, welche angibt, wie viel Dämpfung das übertragene Signal erleiden kann, während es noch am Empfänger decodiert werden kann. Bei Verwendung des FSK-Modulationsschemas mit hoher Datenrate kann ein FOTA-Verfahren leicht ausgeführt werden, da der Endknoten seinen Empfänger nur für kurze Zeit aktiviert haben muss.
Abstract:
According to one embodiment, the invention relates to a method comprising: transmitting (410), by an apparatus, a message to detect one or more wireless communication devices; receiving (420), in response to the transmitted message, at least one response message comprising at least identification information regarding a wireless communication device; determining (430) that the apparatus has data suitable for transmitting to the wireless communication device without establishing a formal communication connection with the wireless communication device; and transmitting (440) one or more subsequent messages to the wireless communication device in response to the received response message, wherein the one or more subsequent messages comprise at least the data suitable for transmitting to the wireless communication device without establishing a formal communication connection.
Abstract:
Methods and apparatuses are provided that include providing transmit diversity for data channel transmissions. Different precoding vectors can be used over different slots of a given subframes to precode corresponding signals. The precoding vectors, in one example, can be orthogonal. In addition, using the different precoding vectors can be determined based on a user equipment receiving an indicator from a base station receiving the data channel transmissions of whether to use frequency hopping over the slots. Moreover, precoding vectors used to precode data channel transmissions can additionally or alternatively vary across subframes.