Abstract:
Power Over Ethernet (POE) / universal power over Ethernet (UPoE) may be enabled at multigigabit port-channel connections. This may allow for additional speed support in auto-negotiation messages while employing multigigabit speeds. An integrated connector module (referred to herein as a "ICM") compatible with UPoE with a modified local physical layer (PHY) circuit may be capable of supporting multi- gigabit data rates (such as between IG to 10G, e.g., 2.5G and 5G) as to not limit the data rates to IG. The ICM may provide multi-gig data transmission through a first plurality of pins comprising a multi-gig data pin area. Furthermore, the ICM may provide UPoE power to support the multi-gig transmission through a second plurality of pins comprising a UPoE power pin area.
Abstract:
A plurality of interference measurements are obtained at a first communication device. The interference measurements correspond to interference experienced by the first communication device. A filter is applied to the plurality of interference measurements to obtain a filtered interference measurement, wherein the filtered interference measurement is a function of a current interference measurement and one or more past interference measurements. A channel quality indicator (CQI) corresponding to a communication channel between the first communication device and a second communication device is determined based at least in part on the filtered interference measurement. The CQI is transmitted from the first communication device to the second communication device.
Abstract:
A system, apparatus, computer-readable medium, and computer-implemented method are provided for detecting anomalous behavior in a network. Historical parameters of the network are determined in order to determine normal activity levels. A plurality of paths in the network are enumerated as part of a graph representing the network, where each computing system in the network may be a node in the graph and the sequence of connections between two computing systems may be a directed edge in the graph. A statistical model is applied to the plurality of paths in the graph on a sliding window basis to detect anomalous behavior. Data collected by a Unified Host Collection Agent ("UHCA") may also be used to detect anomalous behavior.
Abstract:
Systems, apparatuses, methods, and computer programs for detecting anomalies to identify coordinated group attacks on computer networks are provided. An anomaly graph of a network including nodes, edges, and an indegree of the nodes in the anomaly graph may be determined. Nodes with an indegree of at least two may be designated as potential targets. Nodes with no incoming connections may be designated as potentially compromised nodes. The designated potentially compromised nodes may be outputted as potentially associated with a coordinated attack on the network when the potentially compromised nodes connect to one or more of the same potential target nodes.
Abstract:
Rate assignment circuitry (102) detects when a data transmission begins and originally assigns an Orthogonal Variable Spreading Factor (OVSF) code corresponding to low data rate. Over time, a base station controller (101) determines when an OVSF code and/or a repetition rate should be changed (i.e., data rate increased or decreased). The OVSF code and/or the repetition rate is changed in order to gradually increase the data rate, up to a maximum allowable data rate. Once data transmission ceases for a period of time the OVSF code and/or the repetition rate is changed in order to gradually decrease the data rate, down to a lowest allowable data rate.
Abstract:
A method and an apparatus for rate control in a high data rate (HDR) communication system are disclosed. An exemplary HDR communication system defines a set of data rates, at which an access point (AP) may send data packets to an access terminal (AT). The data rate is selected to maintain targeted packet error rate (PER). The AT's open loop algorithm measures received signal to interference and noise ratio (SINR) at regular intervals, and uses the information to predict an average SINR over the next packet duration. The AT's closed loop algorithm measures a packet error rate (PER) of the received signal, and uses the PER to calculate a closed loop correction factor. The loop correction factor is added to the SINR value predicted by the open loop, resulting in an adjusted SINR. The AT maintains a look up table, which comprises a set of SINR thresholds that represent a minimum SINR necessary to successfully decode a packet at each data rate. The AT uses the adjusted set of SINR thresholds in the look up table to select the highest data rate, the SINR threshold of which is below the predicted SINR. The AT then requests, over the reverse link, that the AP send the next packet at this data-rate.
Abstract:
Rate assignment circuitry (102) detects when a data transmission begins and originally assigns an Orthogonal Variable Spreading Factor (OVSF) code corresponding to low data rate. Over time, a base station controller (101) determines when an OVSF code and/or a repetition rate should be changed (i.e., data rate increased or decreased). The OVSF code and/or the repetition rate is changed in order to gradually increase the data rate, up to a maximum allowable data rate. Once data transmission ceases for a period of time the OVSF code and/or the repetition rate is changed in order to gradually decrease the data rate, down to a lowest allowable data rate.
Abstract:
The present application discloses systems and methods for adjusting a back-off value for a rank. In some embodiment, the method includes the steps of: (a) determining whether the rank is underutilized and (b) in response to determining that the rank is underutilized, decreasing the back-off value as a function of time while the rank remains underutilized.