Abstract:
A image reading apparatus includes a plurality of point light sources, arranged in a straight line state, configured to output light for lighting a document situated on a contact glass from a lower side of the contact glass, a light leading member, positioned in front in a light outputting direction of the light output from the point light sources, configured to lead the light output from the point light sources so as to irradiate along a main scanning direction toward the document situated on the contact glass, and a photoelectric conversion element configured to receive reflection light from the document. The light leading member includes positioning means configured to make a gap between each of the point light sources arranged in a line state and the light leading member constant and make an arrangement direction of the point light sources be positioned along a longitudinal direction of the light leading member.
Abstract:
The present invention provides a light source apparatus in which wasteful cost increases can be suppressed during the manufacture of various types of light source apparatuses, and replacement of a broken light source can be performed at low cost, a recording apparatus using the light source apparatus, and an image forming apparatus comprising the recording apparatus. A plurality of optical units comprising optical members (a light source element and a lens) for outputting a single beam are combined separably in row form. A holder is used as means for holding the optical units in row form.
Abstract:
A image reading apparatus includes a plurality of point light sources, arranged in a straight line state, configured to output light for lighting a document situated on a contact glass from a lower side of the contact glass, a light leading member, positioned in front in a light outputting direction of the light output from the point light sources, configured to lead the light output from the point light sources so as to irradiate along a main scanning direction toward the document situated on the contact glass, and a photoelectric conversion element configured to receive reflection light from the document. The light leading member includes positioning means configured to make a gap between each of the point light sources arranged in a line state and the light leading member constant and make an arrangement direction of the point light sources be positioned along a longitudinal direction of the light leading member.
Abstract:
There is disclosed an image reading apparatus constructed by an illuminating unit for illuminating an object in a line shape, an image forming optical system for forming a light, as an image, from the object illuminated by the illuminating unit, a line sensor for converting the light formed as an image by the image forming optical system into an image signal, and a frame for holding the illuminating unit and the line sensor, wherein a shape in which vertices of at least a part of the cross section of the illuminating unit are connected by straight lines is set to a polygon of a pentagon or more, so that an image can be stably read at a high quality.
Abstract:
PROBLEM TO BE SOLVED: To provide an adhering structure for an optical component and an image sensor module that read description contents of a document as less-distorted image data. SOLUTION: The adhering structure is provided for an optical component wherein a long and narrow lens unit 3 is adhered to a case 1 by an adhesive. The structure includes: one or more abutting parts 6B where the case 1 and the lens unit 3 are abutted on each other in a sub scanning direction (y); and one or more adhering parts 7B, in a portion other than the abutting parts 6B, where the case 1 and the lens unit 3 are adhered via the adhesive. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
PURPOSE: A laser scanning unit and image forming apparatus applying the same are provided to easily distinguish injection direction of light beam using one optical detector. CONSTITUTION: A light source(20) is irradiated using optical beam. A beam deflector(30) make irradiated light beam bias. A beam bias device forms clockwise and counterclockwise scanning lines to a first and second non-image section. A reflective member(40) reflects incident light beam from the beam bias device. A light detector(50) receives the second light beam passing the first light beam and reflective member.
Abstract:
밀착형 이미지 센서 유닛은, 원고 조명용의 광원(10)과, 상기 광원(10)으로부터의 광을 원고로 유도하기 위한 막대 형상의 도광체(11)와, 상기 원고로부터의 반사광을 광전 변환 소자에 결상하는 결상 소자(12)와, 상기 광전 변환 소자가 실장된 센서 기판(14)과, 이들을 장착함과 함께 상기 도광체(11)를 장착하기 위한 위치 결정부(200)를 갖는 프레임(15)과, 상기 도광체(11)를 착탈 가능하게 지지하고, 또한 상기 위치 결정부(200)에 착탈 가능하게 장착되는 지지 부재(16)를 구비하고 있다. 접착재를 사용하지 않고, 도광체(11)를 프레임(15)에 장착할 수 있으므로, 도광체(11)의 변형이나 밀착형 이미지 센서 유닛의 휨 등을 방지할 수 있다.
Abstract:
An optical scanning apparatus includes first and second light source units including respective light sources; a rotating polygon mirror that performs deflection scanning of laser beams emitted from the light sources included in the first and second light source units; and a positioning member including a first abutting portion on which the first light source unit abuts and a second abutting portion on which the second light source unit abuts, the positioning member positioning the first and second light source units. The first and second light source units are positioned by the positioning member and arranged next to each other in a rotation axis direction of the rotating polygon mirror. The positioning member is a single member disposed between the first and second light source units in the rotation axis direction.
Abstract:
An optical scanning apparatus includes first and second light source units including respective light sources; a rotating polygon mirror that performs deflection scanning of laser beams emitted from the light sources included in the first and second light source units; and a positioning member including a first abutting portion on which the first light source unit abuts and a second abutting portion on which the second light source unit abuts, the positioning member positioning the first and second light source units. The first and second light source units are positioned by the positioning member and arranged next to each other in a rotation axis direction of the rotating polygon mirror. The positioning member is a single member disposed between the first and second light source units in the rotation axis direction.