Abstract:
A light projection unit includes a substrate, a plurality of light emitting elements arrayed on the substrate in a main scanning direction and including light emitting surfaces, a light guide facing the light emitting surfaces to direct light projected from the light emitting elements onto an illumination target and including a first positioning portion, and a holder including a second positioning portion that engages the first positioning portion of the light guide to position the light guide on the holder. The first positioning portion of the light guide is positioned between centers of light emission of adjacent light emitting elements in the main scanning direction of the substrate when the first positioning portion engages the second positioning portion of the holder.
Abstract:
An image forming apparatus for forming an image by performing exposure scanning of an image carrier is provided. The apparatus includes: a unit for storing image data having a height in a sub-scanning direction equivalent to a certain number of amounts of the image data obtained by a single main scan; a unit for, in a case where a block in which is located a scan line of image data that is the scanning target has moved in a sub-scanning direction, storing a block position and a moving direction; a unit for, based on the skew information, converting image data of the main scan line and outputting an amount of image data that is obtained by a single main scan; and a unit for, when a block unit has been processed, replacing the processed block unit with another block unit.
Abstract:
An image forming apparatus includes a phase calculation portion, a pattern recognition portion, and a correction coefficient output portion. The phase calculation portion calculates a shift amount of the scanning lines as phase information and, from the phase information, outputs a first set of coefficients. The pattern recognition portion outputs a pattern concordance rate by performing pattern recognition on the group of pixels of interest and peripheral pixels thereof. The correction coefficient output portion outputs a second set of coefficients for correcting the first set of coefficients in accordance with the pattern concordance rate. An interpolation processing portion performs interpolation calculations by referring to the first set of coefficients, the second set of coefficients, and the pattern concordance rate.
Abstract:
An optical scanner includes a light source modulated based on image data, an optical deflection and scanning part deflecting a light beam emitted from the light source, and a scanning and imaging optical system condensing the deflected light beam toward a scanning surface so as to form a light spot optically scanning the scanning surface. The effective scanning region of the scanning surface is divided into a plurality of regions according to a scanning line curving characteristic. Suitable image data for optically scanning the divided regions are selected from image data of a plurality of image lines every time the light spot optically scans the effective scanning region, so that the image data of each of the image lines is written with scanning line curving being corrected.
Abstract:
Described herein is a light source apparatus in which wasteful cost increases can be suppressed during the manufacture of various types of light source apparatuses and replacement of a broken light source can be performed at low cost, a recording apparatus using the light source apparatus, and an image forming apparatus comprising the recording apparatus, a plurality of optical units comprising optical members (a light source element and a lens) for outputting a single beam are combined separably in row form, and a holder used as means for holding the optical units in row form.
Abstract:
A light projection unit includes a substrate, a plurality of light emitting elements arrayed on the substrate in a main scanning direction and including light emitting surfaces, a light guide facing the light emitting surfaces to direct light projected from the light emitting elements onto an illumination target and including a first positioning portion, and a holder including a second positioning portion that engages the first positioning portion of the light guide to position the light guide on the holder. The first positioning portion of the light guide is positioned between centers of light emission of adjacent light emitting elements in the main scanning direction of the substrate when the first positioning portion engages the second positioning portion of the holder.
Abstract:
An image forming apparatus includes a phase calculation portion, a pattern recognition portion, and a correction coefficient output portion. The phase calculation portion calculates a shift amount of the scanning lines as phase information and, from the phase information, outputs a first set of coefficients. The pattern recognition portion outputs a pattern concordance rate by performing pattern recognition on the group of pixels of interest and peripheral pixels thereof. The correction coefficient output portion outputs a second set of coefficients for correcting the first set of coefficients in accordance with the pattern concordance rate. An interpolation processing portion performs interpolation calculations by referring to the first set of coefficients, the second set of coefficients, and the pattern concordance rate.
Abstract:
In a line head, a plurality of light emitters are arrayed on a substrate in a first direction. Each of the light emitters is operable to emit a light beam. In a rod lens array, a plurality of rod lenses are arrayed in the first direction, and each of the rod lenses is adapted to focus the light beam emitted from an associated one of the light emitters onto a target surface. The substrate and the rod lens array are attached to a holder elongated in the first direction. Positioning members are provided at both end portions of the holder in the first direction. A relative position between the substrate and at least one of the positioning members is variable in a second direction perpendicular to the first direction.
Abstract:
An image reading apparatus, including point light sources, arranged in a straight line state, configured to output light to light a document, and a light leading member, positioned in front in a light outputting direction of the light output from the point light sources, configured to receive the light incident on a surface of the light leading member, and to lead the received light so as to irradiate along a main scanning direction toward the document. The light leading member includes a positioning unit configured to make a gap between one of the point light sources arranged in a line state and the light leading member the same as a gap between another of the point light sources and the light leading member, and to make an arrangement direction of the point light sources be positioned along a longitudinal direction of the light leading member.
Abstract:
A method for adjusting a scanning module includes the steps of: providing a first fixing force to mount an adjustment assembly, to which an image sensor is attached, onto a base of the scanning module and loosely fixing the adjustment assembly to the base with a first fixing force; adjusting a relative position between the adjustment assembly and the base of the scanning module, and testing a first adjustment result until the first adjustment result is accepted; securing the adjustment assembly to the base of the scanning module with a second fixing force; and removing the first fixing force. The first and second fixing forces come from different sources.