Abstract:
The Input system has the contiunous marks on a medium having an image or images such as characters or graphic patterns being read by the scanner. The data processor including a microcomputer reads the image and the mark scanned, and the microcomputer eliminates overlapping of the pieces of image data in accordance with the data representing the mark.
Abstract:
A scanner which converts an oversampled substrate image into a digital pixel array which may be at an arbitrary sampling frequency lower than the first sampling frequency. The scanner sensor converts the substrate image into an array of analog pixel at a first sampling frequency. Preferably the first sampling frequency substantially oversamples the image from the actual frequency desired in the final digital image. The analog pixels are converted into a first array of digital pixels. The first digital pixel array is converted by a sinc filter in the linear lumen domain, i.e. the digital pixels are linearly representative of the brightness of light sensed by the sensor, to a second array of pixels at a second sampling frequency. The second sampling frequency should be much lower than the first sampling frequency to produce high quality images with substantially fewer pixels than required by the prior art.
Abstract:
There exists a problem that, for registration correction, carrying out less-than-one-pixel-basis correction and one-pixel-basis correction for an image after half toning using screen processing causes unevenness in density when it is hard for linearity of image density against a PWM to come out. Processing of interpolation is carried out so that the way how a halfdot is formed may always becomes the same after the interpolation processing. By applying a matrix in consideration of a dot direction which may be broken by the interpolation processing at the time of the screen processing, conversion in which a way of locating the half dot maintains relation of vertical inversion in a subscanning direction is carried out, and less-than-one-pixel-basis correction is carried out.
Abstract:
There exists a problem that, for registration correction, carrying out less-than-one-pixel-basis correction and one-pixel-basis correction for an image after half toning using screen processing causes unevenness in density when it is hard for linearity of image density against a PWM to come out. Processing of interpolation is carried out so that the way how a halfdot is formed may always becomes the same after the interpolation processing. By applying a matrix in consideration of a dot direction which may be broken by the interpolation processing at the time of the screen processing, conversion in which a way of locating the half dot maintains relation of vertical inversion in a subscanning direction is carried out, and less-than-one-pixel-basis correction is carried out.
Abstract:
An image processing apparatus for correcting a dislocation of image, pixels being arranged in a first and second directions perpendicular to each other, including: a section which breaks down a correction amount of the image of each pixel in the second direction into a first shift amount with a unit of a prescribed block, a second shift amount with a unit of the pixel, and a third shift amount less than the pixel size; a minimal shift section which shifts the image data by the third shift amount; a pixel unit shift section which shifts the image data by the second shift amount; and a block unit shift section which shifts the image data by the first shift amount, during compression and storage processing of the image data in the block unit, and executing arrangement of the image data after reading-out and expanding the compressed image data.
Abstract:
A method of processing image data from a multi-chip array with a plurality of photosensitive chips aligned substantially in a transverse direction, including: generating, using a processor for at least one specially programmed computer, a Δy or Δx optical error value equal to a difference in process and transverse directions, respectively, between actual and apparent locations for a first photosensor, the apparent location due to optical error; and storing, in a memory element for the specially programmed computer, respective outputs from the photosensors in the array for first and second scan lines. The actual location is included in the first scan line. The processor retrieves, for use as at least part of useful image data for the first photosensor, the stored output of: the first photosensor for the second scan line for a Δy optical error, or a second photosensor for the first line for a Δx optical error.
Abstract:
A printer not optically correcting bends and inclinations of scanning lines needs to execute such control as to electrically correct them. However, a conventional correction method has a problem that this correction causes an image defect such as an image streak or an uneven concentration in a specific area. A correction method of the present invention, when an input image has only one color, executes only correction by a second correction component which corrects distortions in a main scanning direction without executing correction by a first correction component which corrects bends and inclinations in a sub-scanning direction, and when an input image has two or more colors, executes both of correction by the first correction component and correction by the second correction component. This control can reduce the frequency of occurrence of an image defect.
Abstract:
Image distortion is corrected in a color printer wherein print units for a plurality of colors are aligned to form a color image by superposing images formed by the print units. A quantity of image distortion is detected, and correction data of main scan address and subscan address are calculated and stored according to the detected image distortion for each main scan address. When input color image data are corrected, printing position is corrected in combination of address change with density interpolation. When the correction data exceeds the maximum correction range, the correction data are replaced by the maximum in the correction range for distortion correction. Further, in the image data correction, after the image data are converted to data having a smaller number of gradation levels, the data are delayed according to the serial arrangement of the print units. Then, the delayed data are converted again for printing.
Abstract:
Image distortion is corrected in a color printer wherein print units for a plurality of colors are aligned to form a color image by superposing images formed by the print units. A quantity of image distortion is detected, and correction data of main scan address and subscan address are calculated and stored according to the detected image distortion for each main scan address. When input color image data are corrected, printing position is corrected in combination of address change with density interpolation. When the correction data exceeds the maximum correction range, the correction data are replaced by the maximum in the correction range to utilize the capability of the distortion correction of the printer. Further, in the image data correction, after the image data are converted to data having a smaller number of gradation levels, the data are delayed according to the serial arrangement of the print units. Then, the delayed data are converted again for printing.
Abstract:
An image reading apparatus includes: a document holder on which a document is placed; a document positioning member, wherein the document is positioned on the document holder according to the document positioning member; an image reading device for reading an image of the document positioned on the document holder; and a correcting device for correcting an inclination of the image read by the image reading device according to an inclination of the document positioning member. The inclination of the document positioning member is an inclination on the document holder for a primary scanning direction.