Abstract:
An image forming apparatus includes a plurality of image forming units, an endless moving member for mounting and carrying a recording material so as to transfer each image formed by a corresponding one of the plurality of image forming units at a transfer position, a detection circuit for detecting the recording material on the endless moving member, and a correction circuit for correcting an image forming timing of each corresponding one of the plurality of image forming units based on a detection output of the detection circuit. Each image forming unit has a delay unit that delays input image data and an image forming unit that forms an image based on the image data output from the delay unit. The correction circuit corrects the timing of an image forming, operation by controlling the delay time of the delay unit. The endless moving member can convey recording materials of plural sizes and the correction circuit controls the timing of tile image forming operation of each image forming unit according to the size of the recording material conveyed by said endless moving member and/or detected unevenness of thickness of the timing belt of the endless moving member.
Abstract:
An image reading apparatus that optically reads a document includes: multiple line sensors provided approximately parallel to each other and each having light-receiving elements arranged in line form, each line sensor capturing respective line-shaped regions spanning in the main scanning direction of the document in respective color components; a movement unit that causes the positional relationship between the document and the multiple line sensors to move relative to the sub scanning direction that is orthogonal to the main scanning direction; a color skew adjustment unit that adjusts positional skew in the sub scanning direction in scan data of each of the color components captured by the multiple line sensors in synchronization with the movement caused by the movement unit, in accordance with an offset amount based on the distance between each of the multiple line sensors.
Abstract:
PROBLEM TO BE SOLVED: To provide a method and a device for adjusting a drawing condition to reliably reduce jaggy in an image pattern when the image pattern is drawn on an image recording medium by using a plurality of two-dimensionally arranged drawing elements. SOLUTION: An optical magnification β that can control the displacement LER(β) of a recording position of a drawing point formed by micromirrors 40 with respect to a Y direction into an allowable range is set from the relation among the distance TY0 in the Y direction between mirror images projected onto a substrate F of the micromirrors 40 constituting a DMD 36, an inclination angle θ of the DMD 36, a recording pitch ΔY of the image pattern and the optical magnification. COPYRIGHT: (C)2008,JPO&INPIT
Abstract translation:要解决的问题:提供一种方法和装置,用于当通过使用多个二维布置的绘图元素在图像记录介质上绘制图像图案时,调整绘图条件以可靠地减小图像图案中的锯齿状 。 解决方案:可以将由微镜40形成的描绘点的记录位置相对于Y方向的位移LER(β)控制在允许范围内的光学倍率β从距离TY0 in 投影到构成DMD36的微镜40的基板F上的镜像之间的Y方向,DMD36的倾斜角度θ,图像图案的记录间距ΔY和光学倍率。 版权所有(C)2008,JPO&INPIT
Abstract:
An electronoptical apparatus consisting essentially in optical and mechanical devices enabling a document 1 to be telecopied to be kept in a fixed position during its dot-by-dot analysis effected along a line by scanning by means of a rotating mirror 3 associated with an electronoptical unit 7, both mounted on a carriage 4 to which a step-by-step movement is imparted with each change of line.
Abstract:
A multifunction peripheral includes a scanning platform, a scanning module, a recording unit and a controlling unit. The scanning platform includes a standby position, a position-calibrating structure and a datum line. The scanning platform is divided into a first zone and a second zone by the datum line. The position-calibrating structure is included in the second zone. The scanning module is movable with respect to the scanning platform for performing a scanning operation. The recording unit is used for recording a parameter associated with a position of the scanning module with respect to the scanning platform. The controlling unit is used for controlling movement of the scanning module according to the parameter recorded in the recording unit, so that the scanning module is moved through the position-calibrating structure to perform a position-calibrating operation. After the position-calibrating operation is completed, the scanning module is moved to the standby position.
Abstract:
A multifunction peripheral includes a scanning platform, a scanning module, a recording unit and a controlling unit. The scanning platform includes a standby position, a position-calibrating structure and a datum line. The scanning platform is divided into a first zone and a second zone by the datum line. The position-calibrating structure is included in the second zone. The scanning module is movable with respect to the scanning platform for performing a scanning operation. The recording unit is used for recording a parameter associated with a position of the scanning module with respect to the scanning platform. The controlling unit is used for controlling movement of the scanning module according to the parameter recorded in the recording unit, so that the scanning module is moved through the position-calibrating structure to perform a position-calibrating operation. After the position-calibrating operation is completed, the scanning module is moved to the standby position.
Abstract:
A full-zone optical image addressing apparatus, including an addressing device, an image extraction converter, a comparator, an AND gate and a counter. The addressing device is located at the enclosure of the scanner and includes a plurality of geometric patterns. Each of the geometric patterns includes a plurality of rows of pixels. While receiving an exposure signal, the image extraction converter extracts one row of pixels from the addressing device, such that a series of analog signals is obtained and output to the comparator. The comparator then compares the series of analog signals to an analog critical voltage to output a series of analog comparison signals to the AND gate. The AND gate synchronously processes the series of analog comparison signals and a pixel rate clock to output the pixel data corresponding to the extracted row of pixels to the counter. After receiving the synchronously processed pixel value from the AND gate, the counter calculates and outputs the extracted row of pixels, including the amount of pixels and the geometric patterns in the row of pixels.
Abstract:
In order to detect a position of an optical recording medium on which printing is performed, it is provided an optical sensor provided with include a photo emitter operable to emit light and a photo receiver operable to receive light and output a first signal in accordance with an amount of the received light. The optical sensor is transported to a position above a marker provided on the tray. Light is emitted from the photo emitter to irradiate the marker. Light reflected from the marker is received by the photo receiver. A reference value is determined based on a first value of the first signal outputted when the marker is irradiated. A predetermined calculation is executed with respect to the reference value to determine a threshold value. The optical sensor is transported above the tray, while emitting light from the photo emitter and comparing the first signal outputted from the photo receiver with the threshold value. A position of the marker is identified based on the comparison of the first signal and the threshold value. It is determined a position at which the printing begins based on the identified position of the marker.
Abstract:
A compensation apparatus for image scan, applied to an optical scanner with a platform, on which an object to be scanned is disposed. The optical scanner has a photosensitive apparatus with a set of scan photosensitive devices and a storage apparatus. When the object is scanned by the set of scan photosensitive devices, a scanned image is obtained and saved in the storage apparatus temporarily. The compensation apparatus has a set of calibration boards, a set of calibration photosensitive devices and an image processor. The set of calibration boards has two calibration boards located at two sides of the platform. The set of calibration photosensitive devices is located at two sides of the set of scan photosensitive device. The image processor is used to extract and compare the calibrated image, so as to adjust the scanned image.
Abstract:
A document camera (1) detects a figure of a known shape on a stage (13) and acquires the coordinates of the figure, and acquires image processing area and projection correction parameter. The document camera (1) extracts image data of the image processing area from image data acquired by shooting the stage (13) and an original (4), and performs projection correction on the image data using the projection correction parameter. Further, the document camera (1) performs rotation correction on image data undergone projection correction. Furthermore, the document camera (1) performs zoom correction on image data undergone rotation correction, and generates output input image.