Abstract:
In one aspect, the invention encompasses a field emission display device. The device comprises a base plate and a face plate which is over and spaced from the base plate. The device further comprises emitters associated with the base plate and phosphor associated with the face plate. Additionally, the device comprises a reflector associated with the base plate and having an upper reflective surface. In another aspect, the invention encompasses a method of forming a field emission display device. A base plate is provided, and a pair of spaced emitter-containing regions are provided over the base plate. A reflector is formed over the base plate and between the spaced emitter-containing regions. A face plate is provided, and a pair of spaced phosphor-containing masses are formed in association with the face plate. The face plate and base plate are joined to one another with the face plate being aligned over the base plate and spaced from the base plate. After the joining, the spaced emitter-containing regions align under the spaced phosphor-containing masses, and the reflector aligns under the space between the spaced phosphor-containing masses.
Abstract:
A method of manufacturing a multi-tube fluorescent discharge lamp which construct multiple glass tubes of different caliber in coaxial structure, the both sides of the inner most tube are connected to a cathode respectively, by isolating, perforating and blocking the discharge path, forming a successive discharge path, and coating phosphor on surface of the discharge tubes. The Invention can then have more fluorescent area than a conventional fluorescent lamp of the similar size and higher lumen as well as power transfer factor. Compared with the power consumption of a conventional fluorescent discharge lamp, the Invention therefore has higher luminous flux.
Abstract:
The apparatus for manufacturing a plasma display panel comprising comprising: a first mechanism for supplying a cover member formed by a metal sheet to which low-melting-point glass is applied to a first location within the gas introduction and sealing chamber, a second mechanism provided in the gas introduction and sealing chamber for moving the cover member from the first location to a second location which is over a heating apparatus provided in the gas introduction and sealing chamber, a third mechanism provided in the gas introduction and sealing chamber for performing vacuum exhausting an inside of the plasma display panel and then introducing a luminescent gas into the plasma display panel, and a fourth mechanism provided in the gas introduction and sealing chamber for heating the metal sheet to which the low-melting-point glass is applied by using the heating apparatus, so that the gas introduction port is sealed by the low-melting-point glass.