Abstract:
This high-strength cold-rolled steel sheet contains, in mass %, C: 0.02% to 0.20%; Si: 0.001% to 2.5%; Mn: 0.01% to 4.0%; P: 0.001% to 0.15%; S: 0.0005% to 0.03%; Al: 0.001% to 2.0%; N: 0.0005% to 0.01%; and O: 0.0005% to 0.01%; in which Si+Al is limited to less than 1.0%, and a balance being composed of iron and inevitable impurities, in which an area ratio of bainite in a metal structure is 95% or more, at a sheet thickness center portion being a range of ⅝ to ⅜ in sheet thickness from the surface of the steel sheet, an average value of pole densities of the {100} to {223} orientation group is 4.0 or less, and a pole density of the {332} crystal orientation is 5.0 or less, and a mean volume diameter of crystal grains in the metal structure is 7 μm or less.
Abstract:
The present invention provides a bainite-containing-type high-strength hot-rolled steel sheet. The steel sheet, containing C: greater than 0.07 to 0.2%, Si: 0.001 to 2.5%, Mn: 0.01 to 4%, P: 0.15% or less, S: 0.03% or less, N: 0.01% or less, Al: 0.001 to 2% and a balance being composed of Fe and impurities, has an average value of pole densities of the {100} to {223} orientation group at a sheet thickness center portion being a range of ⅝ to ⅜ in sheet thickness from the surface of the steel sheet is 4.0 or less, and a pole density of the {332} crystal orientation is 4.8 or less, an average crystal grain diameter is 10 μm or less and vTrs is −20° C. or lower, and a microstructure is composed of 35% or less in a structural fraction of pro-eutectoid ferrite and a balance of a low-temperature transformation generating phase.
Abstract:
A fast-speed laser scoring method is provided, in which a set of related laser scoring device is used to simultaneously score lines on the upper surface and the lower surface of an oriented silicon steel strip, which is being fed and traveling forwards on a production line, with high-focalized continuous wave laser beam; the lines scored on the upper surface and the lines scored on the lower surface have the same space between every two adjacent scored lines but are staggered each other in order to reduce iron loss evenly. The space between every two adjacent scored lines on the same surface is 6-12 mm, laser power is 1000-3000 W and scanning speed is 100-400 m/min. The machining rate of the scoring method and device attains 1.5-2 times the one of conventional scoring methods which can not simultaneously score the upper and lower surfaces of a steel strip at a time. The lines scored on a steel strip by the method can reduce iron loss of the strip by 10-16%.
Abstract:
The method comprises the following steps: bonding at least one chemical, optically luminescent compound (3) onto at least one indicator element (6) for testing the treatments (14), wherein at least one luminescence property of the chemical compound (3) can be changed; assigning at least one indicator element (6) to the object (1); wherein the indicator element (6) and the object (1) are simultaneously subjected to the same conditions of the energy-introducing treatment (14); changing the luminescence property of the chemical compound (3), wherein the level of the change to the luminescence property depends upon the energy-introducing treatment (14); irradiating (13) the chemical compound (3) with electromagnetic radiation directed onto the indicator (6) for excitation of the luminescence during the energy-introducing treatment or following the energy-introducing treatment (14).
Abstract:
A grain oriented electrical steel sheet has thermal strain introduced thereinto in a dotted-line arrangement in which strain-imparted areas are lined in a direction that crosses a rolling direction of the steel sheet, wherein the strain-imparted areas introduced in the dotted-line arrangement have a size from 0.10 mm or more to 0.50 mm or less and an interval between the adjacent strain-imparted areas is from 0.10 mm or more to 0.60 mm or less.
Abstract:
Provided is a grain-oriented electric steel sheet and a method for manufacturing same, the steel sheet having superior magnetic properties. The method comprises heating a slab comprising 2.0 to 4.5 weight % of Si, 0.001 to 0.10 weight % of C, 0.010 weight % or lower of Al, 0.08 weight % or lower of Mn, 0.005 weight % or lower of N, 0.002 to 0.050 weight % of S, the remainder being Fe and other unavoidable impurities, performing hot-rolling of the heated slab, performing cold-rolling one time or two or more times including an intermediate annealing, performing decarbonization and re-crystallizing annealing, and performing secondary re-crystallizing annealing.
Abstract:
A grain oriented electrical steel sheet has linear grooves for magnetic domain refinement formed on a surface thereof and may reduce iron loss by using these linear grooves, where the proportion of those linear grooves having crystal grains directly beneath themselves, each crystal grain having an orientation deviating from the Goss orientation by 10° or more and a grain size of 5 μm or more, is controlled to 20% or less, and secondary recrystallized grains are controlled to have an average β angle of 2.0° or less, and each secondary recrystallized grain having a grain size of 10 mm or more is controlled to have an average β-angle variation of 1° to 4°.
Abstract:
The present invention provides a method for manufacturing a grain oriented electrical steel sheet, including preparing as a material a steel slab having a predetermined composition and carrying out at least two cold rolling operations, characterized in that a thermal treatment is carried out, prior to any one of cold rolling operations other than final cold rolling, at temperature in the range of 500° C. to 750° C. for a period in the range of 10 minutes to 480 hours. The grain oriented electrical steel sheet of the present invention exhibits through utilization of austenite-ferrite transformation superior magnetic properties after secondary recrystallization.
Abstract:
A silicon steel material is heated in a predetermined temperature range according to contents of B, N, Mn, S, and Se (step S1), and is subjected to hot rolling (step S2). Further, a finish temperature Tf of finish rolling in the hot rolling is performed in a predetermined temperature range according to the content of B. Through these treatments, a certain amount of BN is made to precipitate compositely on MnS and/or MnSe.
Abstract:
On at least one surface of a base metal plate (1) of an α-γ transforming Fe or Fe alloy, a metal layer (2) containing ferrite former is formed. Next, the base metal plate (1) and the metal layer (2) are heated to an A3 point of the Fe or the Fe alloy, whereby the ferrite former are diffused into the base metal plate (1) to form an alloy region (1b) in a ferrite phase in which an accumulation degree of {200} planes is 25% or more and an accumulation degree of {222} planes is 40% or less. Next, the base metal plate (1) is heated to a temperature higher than the A3 point of the Fe or the Fe alloy, whereby the accumulation degree of the {200} planes is increased and the accumulation degree of the {222} planes is decreased while the alloy region (11b) is maintained in the ferrite phase.